
Operation Marstech Mayhem 

Lazarus Group’s 
Open-Source Trap:
North Korea’s New Malware 
Tactic Targeting Developers 
and Crypto Wallets



©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Background
In the wake of Operation99 and Operation Phantom Circuit, STRIKE uncovered that the Lazarus Group had 
engineered an advanced implant, codenamed "marstech1." This state-of-the-art tool marks a significant 
evolution from earlier iterations deployed in global campaigns against developers, featuring unique functional 
enhancements that distinctly set it apart.

Key Findings
• A new implant, Marstech1, was developed and deployed by the threat actor, showing significant differences 

from previous versions.

• The implant Marstech seems to be used in limited targeted attacks on the supply; it has not surfaced 
elsewhere, since its two occurrences in late 2024 and Jan 2025.

• STRIKE also identified a GitHub profile associated with the Lazarus Group operator behind this campaign, 
who has been actively developing implants since November 2024.

Analysis
STRIKE uncovered an additional command and control 
server hosted on Stark Industries LLC that exhibited a pattern 
reminiscent of Operation 99 and Phantom Circuit. However, this 
server appears to employ entirely different tactics from what 
we've seen before. While recent C2s have communicated over 
ports 1224 and 1245, this one is operating on port 3000 and 
lacks the React web admin panel observed in Phantom Circuit—
though it clearly runs Node.js Express on the backend. This 
setup is markedly different from those seen in previous operations.

The C2 is delivering an obfuscated Java Script implant known as Marstech1, which we cover later on what 
it exactly does. In addition, it serves similar implants that were observed in Operation99, but they have also 
evolved. Two implants known as pay_marstech1 and brow_marstech1 are similar, but different.ions, specifically 
on December 30, January 6, and January 10, maintaining an RDP session for 10 days. In the context of 
Operation99, which involved the C2 server 5[.]253[.]43[.]122, the adversary logged in via RDP more than a 
dozen times between December 26 and January 15. 

NMAP Scan

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Obfuscation Techniques
The Marstech implants utilize different obfuscation techniques than previously seen. The JS implant that was 
observed utilizes; 

• Control flow flattening & self-invoking functions

• Random variable and function names

• Base64 string encoding

• Anti-debugging (anti-tamporing checks)

• Splitting and recombining strings

This ensures that if the threat actor embedded the JS into a software project it would go unnoticed.

The other components, namely pay_marstech1 and brow_marstech1, employ an alternative method to obscure 
their actual purpose. Their obfuscation process consists of two steps:

• Base85 Encoding: 
The long string (assigned to pq) is divided into two segments. The first 8 characters serve as a key 
(stored in wq), while the remainder (from index 9 onward) is Base85 encoded. The code utilizes Python’s 
b85decode to decode this segment.

• XOR Decryption: 
Following the Base85 decoding, the code iterates over each byte of the decoded data, applying an XOR 
operation with a corresponding byte from the key. The key repeats every 8 bytes, achieved using the 
modulo operation (l0 & 7). This process effectively reverses a simple repeating-key XOR cipher.

Operation
The GJS Marstech implant is engineered to 
collect system details from the target machine, 
including the hostname, platform, and home 
directory—a standard reconnaissance 
tactic in Lazarus implants to assess the host 
environment. When accessed directly from the 
C2 server at hxxp://74.119.194.129:3000/j/
marstech1, the JS script appears completely 
unreadable and obfuscated. The adversary can 
embed this implant into legitimate websites, 
software packages, and other parts of the supply 
chain, and it may even be included in genuine 
NPM packages aimed at the cryptocurrency/
web3 sector.

Latest Marstech Victims from Jan 2025

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Have we seen this before?
The Marstech implant appears to have first emerged in late 
December 2024, linked to a command and control server 
at 95.164.45.239, which the threat actor also hosted within 
Stark Industries. It followed similar patterns to recent C2 
infrastructure, establishing connections over port 3000. The 
implant was embedded within the code of a GitHub repository 
associated with SuccessFriend, which STRIKE suspects to be 
the Lazarus threat actor’s GitHub profile. Notably, the Marstech 
operation seems to be distinct from other campaigns targeting 
developers.

Lazarus in Github
STRIKE discovered this profile connected to several C2s dating back to 2024 for the Marstech implant. The 
profile mentioned web dev skills and learning blockchain which is in alignment to the interests of Lazarus. The 
threat actor was committing both pre-obfuscated and obfuscated payloads to various github repositories. 
The SuccessFriend github profile has been active since July 2024, with the most recent activity 2 weeks ago. 
The profile contains a history of legitimate code committed to a number of projects, most recently starting in 
November 2024 malware related repos started to appear. 

The threat actor published several repositories that 
contained code related to this recent operation, such 
as test0122 which contains the implant code pre-
obfuscation.

This repository contained the 1st and 2nd stage implants 
involved in the Marstech operation, including pre-
obfuscated 2nd stage and obfuscated 1st stage implants.

Profile for Success Friend

Malware Repo time-line

Malware Repo time-line

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

The actor published the 1st stage implant (origin.
js) known as Marstech1 in this repository. The 
full functionality of Marstech is described in later 
sections. This implant sent exfiltrated data to the 
URL path hxxp://95.164.45.239:3001/uploads 
and retrieved 2nd stage implants from the URL path 
hxxp://95.164.45.239:3001/client/marstech1.

Analysis of code from test0122
The implants in the Github repository are remarkably different from what is being served from the command 
and control. In the repository test0122 it contains an implant named mc_cur.py that was created two weeks ago. 
The purpose of this implant is to search across Chromium-based browser directories, across multiple operating 
systems in order to modify specific browser configuration files. It focuses on tampering with extension related 
settings, most notably for the MetaMask extension (a popular cryptocurrency wallet extension). Further, the 
implant will report status and download payloads from the C2 URL 74.119.194.129 on port 3001. The implant 
will inject into the browser, but first it must gather a unique identifier from the system (Windows it locates SID 
and macOS the hardware UUID).

The implant will then specify what browser extensions 
it will target for injection. The example below shows 
the extension ID for MetaMask. The next step 
afterwards is to iterate over target browsers and 
their profiles, followed by looking for the extensions 
settings folder and preparing for injection.

The implant will download and extract a remote payload 
from the C2 and extract it in the destination extensions 
folder. Once the payload is present in the directory, the 
implant will modify the browsers preferences file to 
integrate remote config data from the C2 server.

Marstech1 1st stage Implant to download 
from URL (hxxp://95.164.45.239:3001/
client/marstech1)

Function to obtain a unique ID from target system

Function to specify what target extension to inject

Remote payload downloading

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Marstech Implant Capabilities
The following is the analysis of the obfuscated JavaScript file found being served by the C2 and within the code 
repositories.

Crypto Currency Targeting
This JS implant is targeting Exodus and Atomic Crypto currency wallets on Linux, MacOS and Windows. The 
implant will scan the system looking for cryptocurrency wallets in an effort to scan and read the file contents or 
extract metadata.

The code begins by verifying that a specified 
target directory exists and is accessible. It then 
creates a temporary workspace by appending 
a fixed suffix (in this case, a '9') to the original 
directory path. This temporary directory is used 
to recursively copy or enumerate all files and 
subdirectories. For each file discovered, the script 
constructs its full path using Node’s path-joining 
methods and reads the file's contents using a 
helper function, effectively gathering data from 
every file in the target directory.

Obfuscated Code for Crypto Wallet Scanning

Remote payload downloading

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Once the file data is collected, each file’s content is packaged along with a unique identifier—which combines a 
provided label and the filename—into an object. These objects are aggregated into an array that represents all 
of the extracted data. Finally, this array is passed to an exfiltration function, which is responsible for sending the 
data to a remote server via an HTTP POST request. This entire mechanism is part of a larger operation aimed at 
stealing sensitive information from the scanned directory.

Function for scanning and data extraction

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Data Exfiltration
Once the file data is packaged into an array of objects (each containing the file’s content along with its 
corresponding identifier and metadata), the script calls a dedicated exfiltration function—commonly referenced 
as aW. This function builds a payload that includes not only the aggregated file data but also additional 
metadata such as a timestamp (derived from Date.now()), a fixed type identifier (e.g., "marstech1"), and a host 
identifier. The payload is structured into an object where different keys (decoded from Base64 strings) are used 
to label the data and metadata.

The constructed payload is then sent to the 
command-and-control (C2) server using the 
Node.js HTTP request library. Specifically, the 
function makes an HTTP POST request by calling 
a method on the imported request module (after 
decoding, this corresponds to request.post). 
The target URL for the POST is also dynamically 
constructed from Base64-encoded fragments, 
making it harder to detect. This POST request 
delivers the packaged data over the network, 
effectively exfiltrating the sensitive information to 
the remote C2 server controlled by the attacker.

In this code, ak decodes the Base64 
string "NzQuMTE5LjaHR0cDovLwE5NC4 
xMjk6MzAwMA==" to produce 
"74.119.194.129: 3000", and the decoded 
fragment from "L3VwbG9hZHM" 
is "/uploads". When concatenated, 
they yield the full C2 endpoint: 
hxxp://74.119.194.129:3000/uploads.

Functionality to exfiltrate data to C2

Specific function to send data via HTTPs post to /uploads

Decoding C2 URL from JS code

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Anti-Analysis
The anti-analysis code employs one-time execution wrappers and console hijacking techniques to complicate 
both static and dynamic analysis. The one-time wrappers (functions like a6 and a8) allow critical functions to 
run only once, immediately nulling the callback afterward so that subsequent calls yield no effect. This prevents 
analysts from repeatedly invoking or modifying key functions during debugging or automated analysis. 
Additionally, a self-referential check (in a7) examines the function's own string representation, a tactic intended 
to detect tampering or reverse engineering attempts.

In parallel, the script modifies standard console methods (via the function wrapped in a9) by replacing them 
with custom bound functions. This console hijacking obscures debug output and interferes with traditional 
logging, making it harder to trace internal operations during runtime. Together, these techniques hinder the 
analyst’s ability to fully understand or debug the malware, thus enhancing its resistance against analysis and 
reverse engineering.

Anti Analysis one-time execution wrapper

Modifying Console functions

mailto:info%40securityscorecard.io?subject=


©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

©2024 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

Conclusion
Operation Marstech Mayhem exposes a critical evolution in the Lazarus Group's supply chain attacks, 
demonstrating not only their commitment to operational stealth but also significant adaptability in implant 
development. The introduction of the Marstech1 implant, with its layered obfuscation techniques—from 
control flow flattening and dynamic variable renaming in JavaScript to multi-stage XOR decryption in Python—
underscores the threat actor’s sophisticated approach to evading both static and dynamic analysis.

The discovery of novel command-and-control infrastructure operating on unconventional ports and hosting 
unique Node.js Express backends highlights a deliberate shift from previous tactics seen in Operations 99 
and Phantom Circuit. This divergence in operational methodology not only complicates detection but also 
suggests that the Lazarus Group is continuously refining their techniques to exploit vulnerabilities in modern 
software supply chains, including the targeting of cryptocurrency wallets and tampering with browser extension 
configurations.

Furthermore, the integration of these implants within legitimate repositories on GitHub, and their subsequent 
embedding in trusted software packages, poses a significant risk to both developers and end-users alike. The 
use of advanced anti-debugging measures and self-modifying code further exacerbates the challenge of real-
time threat analysis, emphasizing the need for heightened vigilance and a robust security framework in supply 
chain management.

In summary, the findings of Operation Marstech Mayhem serve as a stark reminder that the landscape of 
cyber threats is rapidly evolving. It is imperative for organizations and developers to adopt proactive security 
measures, continuously monitor supply chain activities, and integrate advanced threat intelligence solutions to 
mitigate the risk of sophisticated implant-based attacks orchestrated by threat actors like the Lazarus Group.

Contact STRIKE for Incident Response
SecurityScorecard’s STRIKE Team has access to one of the world’s largest databases of cybersecurity signals, 
dedicated to identifying threats that evade conventional defenses. With proactive risk management and a rapid 
response approach, SecurityScorecard offers companies protection against third-party risks and the ability to 
counter active threats like Operation Marstech Mayhem.

Discover how SecurityScorecard and its STRIKE Team can strengthen your enterprise’s security. For STRIKE 
media inquiries, contact us here.

©2025 SecurityScorecard Inc. All Rights Reserved.

SecurityScorecard.com 
info@securityscorecard.com

mailto:info%40securityscorecard.io?subject=
mailto:info%40securityscorecard.io?subject=
mailto:securityscorecard%4010fold.com?subject=Hello
mailto:info%40securityscorecard.io?subject=

