
A Deep Dive into BianLian
Ransomware
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents

Executive summary 2

Analysis and findings 2

Thread activity – sub_CB0FC0 function 10

Indicators of Compromise 14

securityscorecard.com | 1



Executive summary
BianLian ransomware is a Golang malware that performed targeted attacks across multiple
industries in 2022. The ransomware employed anti-analysis techniques consisting of API calls
that would likely crash some sandboxes/automated analysis systems. The malware targets all
drives identified on the machine and deletes itself after the encryption is complete.

The files are encrypted using the AES256 algorithm (Golang package AES), and as opposed to
other ransomware families, the AES key is not encrypted by a public key and is not stored in the
encrypted files. We believe that decryption is possible by recovering the ransomware encryptor
using forensics tools. The extension of the encrypted files is changed to “.bianlian.”

Analysis and findings
SHA256: eaf5e26c5e73f3db82cd07ea45e4d244ccb3ec3397ab5263a1a74add7bbcb6e2

The malware is a 64-bit executable compiled with Golang. The Build ID shown in figure 1 is a
unique representation of the file and its content. Also, the path shown below contains the
“crypt28” string:

Figure 1

The LoadLibraryA API is utilized to load the “kernel32.dll” module into the address space of the
process:

Figure 2

The ransomware retrieves the address of multiple export functions: "AddDllDirectory",
"AddVectoredContinueHandler", "LoadLibraryExA", and "LoadLibraryExW" (see figure 3).

Figure 3

securityscorecard.com | 2



It obtains the path of the System32 directory via a function call to GetSystemDirectoryA:

Figure 4

LoadLibraryExA is used to load the following DLLs into the process memory: "advapi32.dll",
"ntdll.dll", "winmm.dll", and "ws2_32.dll" (0x800 = LOAD_LIBRARY_SEARCH_SYSTEM32):

Figure 5

The malicious binary forces the system not to display the Windows Error Reporting dialog using
SetErrorMode (0x2 = SEM_NOGPFAULTERRORBOX):

Figure 6

The executable registers a vectored exception handler by calling the
RtlAddVectoredExceptionHandler function:

Figure 7

BianLian ransomware creates an unnamed timer object using the CreateWaitableTimerExW
routine (0x2 = CREATE_WAITABLE_TIMER_HIGH_RESOLUTION, 0x100003 = SYNCHRONIZE |
TIMER_MODIFY_STATE | TIMER_QUERY_STATE):

Figure 8

securityscorecard.com | 3



The timeBeginPeriod function is utilized to request a minimum resolution for periodic timers:

Figure 9

The RtlGetNtVersionNumbers low-level API is used to extract the Windows version numbers:

Figure 10

The malware obtains the PEB’s (Process Environment Block) address of the current process
using RtlGetCurrentPeb:

Figure 11

The ransomware generates 32 pseudo-random bytes via a function call to RtlGenRandom:

Figure 12

It calls the CreateFileA function with a file name consisting of the above bytes and many “A”
characters (figure 13). The function call returns a “NAME INVALID” error, and we believe that the
threat actor wanted to avoid automated systems/sandboxes using most of the API calls
presented so far.

securityscorecard.com | 4



Figure 13

The binary retrieves the affinity mask for the current process and the system:

Figure 14

GetSystemInfo is used to extract information about the current system, as shown in figure 15.

Figure 15

The malicious executable disables dynamic boosting for the current process:

Figure 16

The VirtualAlloc API is used to allocate memory in the address space of the current process
(0x3000 = MEM_COMMIT | MEM_RESERVE, 0x4 = PAGE_READWRITE):

Figure 17

BianLian ransomware retrieves the environment variables for the process using

securityscorecard.com | 5



GetEnvironmentStringsW:

Figure 18

The process adds a HandlerRoutine function to the list of handler functions by calling the
SetConsoleCtrlHandler routine (see figure 19).

Figure 19

The PowerRegisterSuspendResumeNotification function is utilized to receive notifications when
the system is suspended or resumed (0x2 = DEVICE_NOTIFY_CALLBACK):

Figure 20

The malware duplicates the current process handle using the DuplicateHandle API:

Figure 21

Multiple threads that run the same function (sub_CB0FC0) and are responsible for files’
encryption are created:

Figure 22

The encryption threads are synchronized using unnamed event objects:

securityscorecard.com | 6



Figure 23

The process sets the event objects to the signaled state using the SetEvent function:

Figure 24

The GetStdHandle routine is utilized to obtain a handle for the standard input device
(0xFFFFFFF6 = STD_INPUT_HANDLE):

Figure 25

The ransomware initiates the use of the Winsock DLL via a function call to WSAStartup:

Figure 26

The binary obtains information about the available protocols using WSAEnumProtocolsW:

Figure 27

It retrieves the command-line string for the process by calling the GetCommandLineW API:

securityscorecard.com | 7



Figure 28

GetEnvironmentVariableW is used to extract the content of the “GODEBUG” environment
variable, as highlighted below:

Figure 29

BianLian ransomware calls the GetDriveTypeW function with arguments ranging from “A:” to “Z:”
drives:

Figure 30

For each identified drive, the process opens it in reading mode using CreateFileW (0x80000000
= GENERIC_READ, 0x3 = FILE_SHARE_READ | FILE_SHARE_WRITE):

Figure 31

The files are enumerated by calling the FindFirstFileW and FindNextFileW APIs. The
ransomware doesn’t encrypt executables, drivers, and text files because this would leave the
system inoperable.

Figure 32

securityscorecard.com | 8



Figure 33

The malware creates a ransom note called “Look at this instruction.txt” in every traversed
directory (0x40000000 = GENERIC_WRITE, 0x3 = FILE_SHARE_READ | FILE_SHARE_WRITE):

Figure 34

The WriteFile routine is used to populate the ransom note, which contains a hard-coded victim
ID, an email address that can be used to contact the threat actor, and the DarkWeb link:

Figure 35

Figure 36

The binary retrieves the path of the executable file of the current process using
GetModuleFileNameW:

Figure 37

securityscorecard.com | 9



The ransomware extracts the “PATHEXT” environment variable that contains a list of extensions
corresponding to executable files (see figure 38).

Figure 38

The process is looking for the “cmd.exe” file. It obtains attributes for this file by calling the
GetFileAttributesExW function (0x0 = GetFileExInfoStandard):

Figure 39

The CreateFileW API is used to confirm the location of the “cmd.exe” executable:

Figure 40

Whether the “cmd.exe” file is not found in the current directory, the malware retrieves the “path”
environment variable and concatenates the extracted paths with “cmd.exe”:

Figure 41

The malicious executable obtains a pseudo handle for the current process via a call to
GetCurrentProcess:

Figure 42

After the encryption finishes, the malware deletes itself:

securityscorecard.com | 10



Figure 43

Thread activity – sub_CB0FC0 function
The malware reads the file content using the ReadFile API:

Figure 44

The GetFileType API is utilized to retrieve the file type:

Figure 45

The binary moves the file pointer to the beginning of the file via a function call to
SetFilePointerEx (0x0 = FILE_BEGIN):

Figure 46

The encryption key is generated based on 32 bytes hard-coded in the ransomware. The
“aeskeygenassist” instruction is used to compute 240 bytes, as highlighted below:

securityscorecard.com | 11



Figure 47

Figure 48

The process performs the AES InvMixColumn transformation using the “aesimc” instruction (see
figure 49).

securityscorecard.com | 12



Figure 49

The file is encrypted with 14 rounds of AES encryption (AES256), which is assisted by the aesenc
and aesenclast instructions:

Figure 50

The same key is used to encrypt all files, which is unusual for most ransomware families. The AES
key is not encrypted by a public key, which makes the decryption possible if the ransomware
encryptor is recovered after its deletion.

The encrypted content is written back to the file using WriteFile:

Figure 51

securityscorecard.com | 13



The malware appends the “.bianlian” extension to all encrypted files (0x1 =
MOVEFILE_REPLACE_EXISTING):

Figure 52

The encryption operation starts at position 0x3d (61), meaning the first few bytes are not
encrypted. Also, the encrypted content size is a multiple of 16 bytes (in the case of small files) or
4096 bytes (in the case of files > 1KB).

An example of an encrypted file is shown below:

Figure 53

Figure 54

securityscorecard.com | 14



Indicators of Compromise

SHA256

eaf5e26c5e73f3db82cd07ea45e4d244ccb3ec3397ab5263a1a74add7bbcb6e2

BianLian Ransom Note

Look at this instruction.txt

Process spawned

C:\Windows\System32\cmd.exe /c del <Ransomware path>

securityscorecard.com | 15


