

SecurityScorecard.com

info@securityscorecard.com

©2022 SecurityScorecard Inc.

244 Fifth Avenue, Suite 2035,

New York, NY 10001

1.212.222.7061

A Deep Dive into
AvosLocker
Ransomware

 www.securityscorecard.com | 1

Table of Contents
Executive Summary 2

Analysis and Findings 2

Thread activity – sub_CBB930 function 10

Thread activity – sub_CBBAD0 function 13

Running with the -h (--help) parameter 21

Running with the -p (--path) parameter 21

Running with the -l (--disabledrives) parameter 21

Running with the --hide parameter 21

Running with the -t (--threads) parameter 22

Running with the -n (--enablesmb) parameter 22

Running with the -b (--brutesmb) -n (--enablesmb) parameters 23

Running with the --nomutex parameter 24

Indicators of Compromise 25

 www.securityscorecard.com | 2

Executive Summary
AvosLocker is a ransomware-as-a-service (RaaS) group that appeared in 2021. The malware can
run with one of the following parameters: “--help”, “--path”, “--disabledrives”, “--hide”, “--threads”,
“--enablesmb”, “--brutesmb”, and “--nomutex.” The ransomware kills a list of targeted processes,
deletes all Volume Shadow Copies using two commands, and clears all Windows event logs. The
binary can target the logical drives as well as network shares by specifying proper arguments.

The encryption is done using multithreading with I/O completion ports. AvosLocker uses a
combination of RSA and Salsa20 algorithms during the encryption process. Finally, the
ransomware creates an image based on the ransom note text that is set as the Desktop
Wallpaper.

Analysis and Findings
SHA256: EC955F589F25D0D28E55964A1AA79C27492026982994CD4CA1FAF7E8A78DB4BC

The malware performs a call to GetCurrentProcess and then opens the access token associated
with the current process using the OpenProcessToken API (0xF01FF = TOKEN_ALL_ACCESS):

Figure 1

Most of the strings are encrypted using the XOR operator. An example of a decryption algorithm
is displayed in figure 2:

Figure 2

The LookupPrivilegeValueA function is utilized to retrieve the LUID (locally unique identifier)
corresponding to the "SeTakeOwnershipPrivilege" privilege:

Figure 3

 www.securityscorecard.com | 3

AvosLocker enables the above privilege in the access token via a function call to
AdjustTokenPrivileges:

Figure 4

The binary decrypts a list of processes that will be killed (figure 5):

● "encsvc" "thebat" "mydesktopqos" "xfssvccon" "firefox" "infopath" "winword"
"steam" "synctime" "notepad"

● "ocomm" "onenote" "mspub" "thunderbird" "agntsvc" "sql" "excel" "powerpnt"
"outlook" "wordpad" "dbeng50"

● "isqlplussvc" "sqbcoreservice" "oracle" "ocautoupds" "dbsnmp" "msaccess"
"tbirdconfig" "ocssd" "mydesktopservice" "visio"

Figure 5

CreateToolhelp32Snapshot is used to take a snapshot of all processes in the system (0x2 =
TH32CS_SNAPPROCESS):

Figure 6

The ransomware extracts information about the first process from the snapshot using the
Process32First routine:

 www.securityscorecard.com | 4

Figure 7

There is a comparison between the process name and the blacklisted processes:

Figure 8

The malicious binary retrieves information about the next process from the snapshot via a call to
Process32Next:

Figure 9

AvosLocker uses the FNV (Fowler-Noll-Vo) hashing algorithm to identify and call relevant APIs at
runtime:

Figure 10

The executable opens a targeted process using OpenProcess (0x1 = PROCESS_TERMINATE):

 www.securityscorecard.com | 5

Figure 11

The TerminateProcess routine is utilized to kill the targeted process:

Figure 12

The ransomware writes the following data in the command line output:

Figure 13

We’ll explain the purpose of each parameter in the following paragraphs.

The malware creates a mutex called "Zheic0WaWie6zeiy", which ensures that only one copy of
the process is running at a single time:

Figure 14

The process disables file system redirection by calling the Wow64DisableWow64FsRedirection
API:

 www.securityscorecard.com | 6

Figure 15

The binary calls the WinExec function in order to spawn multiple processes (figure 16):

● cmd /c wmic shadowcopy delete /nointeractive – delete volume shadow copies

● cmd /c vssadmin.exe Delete Shadows /All /Quiet – delete volume shadow copies

● cmd /c bcdedit /set {default} recoveryenabled No – disable automatic repair

● cmd /c bcdedit /set {default} bootstatuspolicy ignoreallfailures – ignore errors in
the case of a failed boot / shutdown / checkpoint

● cmd /c powershell -command \"Get-EventLog -LogName * | ForEach { Clear-
EventLog $_.Log }\" - clear all entries from the event logs

Figure 16

The file comes with a hard-coded RSA public key:

Figure 17

AvosLocker creates an input/output (I/O) completion port that is not yet associated with a file
handle (0xFFFFFFFF = INVALID_HANDLE_VALUE):

 www.securityscorecard.com | 7

Figure 18

The malware creates multiple threads that will handle the files encryption. As we can see in
figures 19 and 20, even if the starting address of the thread is StartAddress (sub_D0155F), the
actual relevant function that will be called is sub_CBBAD0:

Figure 19

Figure 20

The thread’s priority is set to 0x2 (THREAD_PRIORITY_HIGHEST) via a function call to
SetThreadPriority:

Figure 21

The number of created threads is 200 (default value); however, it can be modified using the -t (or
--threads) parameter.

FindFirstVolumeW is utilized to retrieve the first volume of the local machine:

Figure 22

 www.securityscorecard.com | 8

The ransomware extracts a list of drive letters and mounted folder paths for a volume using the
GetVolumePathNamesForVolumeNameW function:

Figure 23

The volume enumeration continues by calling FindNextVolumeW:

Figure 24

The malware is looking for volumes that aren’t mounted using the GetDriveTypeW routine (0x1 =
DRIVE_NO_ROOT_DIR):

Figure 25

The binary associates an unmounted volume with a drive letter using SetVolumeMountPointW:

Figure 26

AvosLocker obtains a bitmask representing the available disk drives:

Figure 27

The process creates a thread for each drive that is found. The same method as above is utilized
here, i.e., the starting address of the thread is StartAddress (sub_D0155F); however, the important
function is sub_CBB930:

 www.securityscorecard.com | 9

Figure 28

Figure 29

All identified drives are written to the command line, as highlighted in figure 30.

Figure 30

The new threads’ priority is also set to THREAD_PRIORITY_HIGHEST by the malicious binary.

GetConsoleWindow is used to retrieve the window handle used by the console associated with
the process:

Figure 31

The malware calls the ShutdownBlockReasonCreate API and indicates that the machine should
not be shut down during the encryption process:

 www.securityscorecard.com | 10

Figure 32

The ransomware extracts the identifier of the calling thread:

Figure 33

AvosLocker blocks the calling thread until all created threads will terminate their work using the
Join method:

Figure 34

Thread activity – sub_CBB930 function
The ransomware decrypts a list of extensions that will be skipped (figure 35):

● "avos" "avoslinux" "avos2" "avos2j" "themepack" "nls" "diagpkg" "msi" "lnk" "exe"
"cab" "scr" "bat" "drv" "rtp" "msp"

● "prf" "msc" "ico" "key" "ocx" "diagcab" "diagcfg" "pdb" "wpx" "hlp" "icns" "rom" "dll"
"msstyles" "mod" "ps1" "ics" "hta"

● "bin" "cmd" "ani" "386" "lock" "cur" "idx" "sys" "com" "deskthemepack" "shs" "ldf"
"theme" "mpa" "nomedia" "spl" "cpl" "adv" "icl" "msu"

Figure 35

 www.securityscorecard.com | 11

The malicious executable starts enumerating the drive by calling the FindFirstFileW function:

Figure 36

The ransomware creates a ransom note called “GET_YOUR_FILES_BACK.txt” in every directory
that will be encrypted (0x40000000 = GENERIC_WRITE, 0x2 = CREATE_ALWAYS, 0x80 =
FILE_ATTRIBUTE_NORMAL):

Figure 37

The WriteFile routine is used to populate the ransom note:

Figure 38

Figure 39

The process decrypts a list of folders that will not be encrypted (figure 40):

● "Program Files" "Windows" "Windows.old" "bootmgr" "ProgramData" "System
Volume Information"

● "AppData" "Public" "All Users" "boot" "Intel" "WinNT" "Sophos" "Microsoft." "Games"
"config.msi"

 www.securityscorecard.com | 12

Figure 40

AvosLocker continues the file enumeration using FindNextFileW:

Figure 41

A list of files that will be skipped is decrypted using the XOR operator (figure 42):

● "GET_YOUR_FILES_BACK.txt" "desktop.ini" "autorun.inf" "ntldr" "bootsect.bak"
"thumbs.db"

● "boot.ini" "ntuser.dat" "iconcache.db" "bootfont.bin" "ntuser.ini" "ntuser.dat.log"
"Thumbs.db"

Figure 42

An example of a comparison between the file extension and one that is whitelisted is shown
below:

Figure 43

The ransomware sends an I/O completion packet that contains the targeted file path to the IOCP
created earlier:

 www.securityscorecard.com | 13

Figure 44

Thread activity – sub_CBBAD0 function
GetQueuedCompletionStatus is utilized to dequeue an I/O completion packet from the IOCP:

Figure 45

AvosLocker retrieves file system attributes for a file or directory and avoids the
FILE_ATTRIBUTE_SYSTEM (0x4) attribute:

Figure 46

Based on the assembly code we analyzed, the ransomware uses a free C++ library of
cryptographic schemes called Cryptopp (https://github.com/weidai11/cryptopp):

Figure 47

The malicious process acquires a handle to a key container within a particular cryptographic
service provider (0x1 = PROV_RSA_FULL, 0xF0000000 = CRYPT_VERIFYCONTEXT):

 www.securityscorecard.com | 14

Figure 48

The ransomware generates 32 random bytes via a function call to CryptGenRandom. These bytes
will be used to derive a Salsa20 key and a nonce:

Figure 49

Figure 50

The RSA public key is converted into an array of bytes using CryptStringToBinaryA:

Figure 51

The CryptDecodeObjectEx API is utilized to decode a structure of a particular type (0x1 =
X509_ASN_ENCODING, 0x8 = X509_PUBLIC_KEY_INFO, 0x8000 =
CRYPT_DECODE_ALLOC_FLAG):

Figure 52

 www.securityscorecard.com | 15

The process converts and imports the RSA public key information into the provider and returns a
handle (0x1 = X509_ASN_ENCODING):

Figure 53

The Salsa20 key (32 bytes) and a nonce (8 bytes) that were derived from the randomly generated
buffer are encrypted using the RSA public key:

Figure 54

Figure 55

The above buffer is reversed and converted to Base64 format (0x40000001 =
CRYPT_STRING_NOCRLF | CRYPT_STRING_BASE64):

Figure 56

 www.securityscorecard.com | 16

Figure 57

The AllocateAndInitializeSid function is utilized to allocate and initialize a security identifier (SID)
with 2 subauthorities:

Figure 58

The malware creates a new ACL by calling the SetEntriesInAclA routine:

Figure 59

SetNamedSecurityInfoW is utilized to modify the DACL of the targeted file (0x1 =
SE_FILE_OBJECT, 0x4 = DACL_SECURITY_INFORMATION):

Figure 60

 www.securityscorecard.com | 17

The ransomware opens the file via a call to CreateFileW (0xc0000000 = GENERIC_READ |
GENERIC_WRITE, 0x3 = OPEN_EXISTING, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 61

The file size is retrieved using the GetFileSizeEx API:

Figure 62

AvosLocker reads 1MB at a time:

Figure 63

The process moves the file pointer to the beginning of the file by calling SetFilePointer (0x0 =
FILE_BEGIN):

Figure 64

The binary passes a pointer to the file content to the encryption function:

Figure 65

 www.securityscorecard.com | 18

The file content is encrypted using the Salsa20 algorithm. The implementation below is very
similar to the one presented at https://github.com/weidai11/cryptopp/blob/master/salsa.cpp:

Figure 66

Figure 67

 www.securityscorecard.com | 19

The encrypted file content and the encrypted Salsa20 key and nonce are written to the file using
WriteFile:

Figure 68

The “.avos2” extension is appended to the encrypted files:

Figure 69

An example of an encrypted file is displayed in figure 70.

Figure 70

We continue with the analysis of the main thread.

AvosLocker displays some statistics regarding encryption in the command line window:

 www.securityscorecard.com | 20

Figure 71

The ransomware decrypts and runs a PowerShell script (see figure 72):

● powershell -Command "$a = [System.IO.File]::ReadAllText(\"Z:\GET_YOUR_FILES_BACK.txt\");Add-Type -
AssemblyName System.Drawing;$filename = \"$env:temp\$(Get-Random).png\";$bmp = new-object
System.Drawing.Bitmap 1920,1080;$font = new-object System.Drawing.Font Consolas,10;$brushBg =
[System.Drawing.Brushes]::Black;$brushFg = [System.Drawing.Brushes]::White;$format =
[System.Drawing.StringFormat]::GenericDefault;$format.Alignment =
[System.Drawing.StringAlignment]::Center;$format.LineAlignment =
[System.Drawing.StringAlignment]::Center;$graphics =
[System.Drawing.Graphics]::FromImage($bmp);$graphics.FillRectangle($brushBg,0,0,$bmp.Width,$bmp.Heig
ht);$graphics.DrawString($a,$font,$brushFg,[System.Drawing.RectangleF]::FromLTRB(0, 0, 1920,
1080),$format);$graphics.Dispose();$bmp.Save($filename);reg add \"HKEY_CURRENT_USER\Control
Panel\Desktop\" /v Wallpaper /t REG_SZ /d $filename /f;Start-Sleep 1;rundll32.exe user32.dll,
UpdatePerUserSystemParameters, 0, $false;"

Figure 72

The script’s purpose is to create an image that contains the ransom note and set that as the
Desktop Wallpaper.

The final image that will be set is highlighted below:

Figure 73

 www.securityscorecard.com | 21

Running with the -h (--help) parameter
AvosLocker displays the help menu:

Figure 74

Running with the -p (--path) parameter
The ransomware only encrypts this specific directory:

Figure 75

Running with the -l (--disabledrives) parameter
AvosLocker doesn’t encrypt the logical drives:

Figure 76

Running with the --hide parameter
The malicious executable retrieves the window handle used by the console:

Figure 77

The console window is hidden by calling the ShowWindow function (0x0 = SW_HIDE):

 www.securityscorecard.com | 22

Figure 78

Running with the -t (--threads) parameter
This parameter represents the number of threads that will concurrently encrypt the files:

Figure 79

Running with the -n (--enablesmb) parameter
The ransomware starts enumerating all resources on the network via a function call to
WNetOpenEnumA (0x2 = RESOURCE_GLOBALNET, 0x0 = RESOURCETYPE_ANY):

Figure 80

WNetEnumResourceA is utilized to continue the enumeration of network resources:

Figure 81

AvosLocker connects to a network share by calling the WNetAddConnection2A routine (0x4 =
CONNECT_TEMPORARY):

 www.securityscorecard.com | 23

Figure 82

The network share name that will be encrypted is written to the command line:

Figure 83

A similar thread that has enumerated logical drives is also created in order to traverse the network
shares:

Figure 84

Running with the -b (--brutesmb) -n (--enablesmb)
parameters
The process of discovering all network shares is identical to the above. The main idea, in this case,
is that the malware is looking to extract the hostname/IP address from an available network share
and trying to find logical drives based on it.

The binary makes a connection to a potential logical drive using the WNetAddConnection2A
function (0x4 = CONNECT_TEMPORARY):

Figure 85

 www.securityscorecard.com | 24

For all logical drives that can be found using the above method, the process creates a new thread
that will enumerate them:

Figure 86

Finally, AvosLocker writes the logical drives that were found to the command line:

Figure 87

Running with the --nomutex parameter
The ransomware doesn’t create the mutex in this case.

 www.securityscorecard.com | 25

Indicators of Compromise
Mutex

Zheic0WaWie6zeiy

AvosLocker Ransom Note

GET_YOUR_FILES_BACK.txt

Processes spawned

cmd /c wmic shadowcopy delete /nointeractive

cmd /c vssadmin.exe Delete Shadows /All /Quiet

cmd /c bcdedit /set {default} recoveryenabled No

cmd /c bcdedit /set {default} bootstatuspolicy ignoreallfailures

cmd /c powershell -command \"Get-EventLog -LogName * | ForEach { Clear-EventLog $_.Log }\"

