
Android Malware on the
Rise – A case study of
AhMyth RAT
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents
Table of contents 1
Executive summary 1
Analysis and findings 2
RAT commands 9
Indicators of Compromise 17

securityscorecard.com | 1



Executive summary
The malicious application is based on the open-source Android RAT called AhMyth. The
following commands are implemented: taking pictures, exfiltrating phone call logs and phone
contacts, stealing files and SMS messages from the phone, tracking the device’s location,
recording audio, and sending SMS messages. The network communication with the C2 server is
done by switching from HTTP to WebSocket via the Socket.IO library.

Analysis and findings
SHA256: 9af5c084b7203741bc26debb6212bf138f3c7a41e04d96948a332be4a842882e

We have used jadx to produce the Java source code from the APK file. As we can see in the
Sandbox report, the application impersonates the Google Play Service.

The file called “AndroidManifest.xml” contains the required permissions. For example, it can read
and send SMSmessages, as well as read the Contacts list:

Figure 1

As we can see in Figure 2, the malware is based on the open-source RAT called AhMyth.

securityscorecard.com | 2

https://github.com/skylot/jadx
https://www.joesandbox.com/analysis/873308/0/html


Figure 2

The AdminReceiver class extends the DeviceAdminReceiver class, which implements the
device administration component:

Figure 3

The malware has registered to receive the BOOT_COMPLETED intent to achieve persistence on
the phone. It can make a phone call to "*55555#" in order to modify the shared preferences, as
highlighted below:

securityscorecard.com | 3



Figure 4

Figure 5

The application verifies if the target API level is 26 or higher because it wants to run as a
foreground service; otherwise, it calls startService (Figure 6).

Figure 6

It creates a notification channel called “My Background Service” and sets the notification
visibility to VISIBILITY_PRIVATE. Finally, it calls the startForeground function:

Figure 7

securityscorecard.com | 4



Figure 8

The isAdminActive API is utilized to verify if the application has the permission of the device
manager. The malware can perform privilege escalation by asking the user to add a new device
administrator to the system:

Figure 9

The malicious app ensures that the following permissions are allowed using the
checkPermission function: READ_SMS, SEND_SMS, and RECEIVE_SMS (see Figure 10).

Figure 10

Figure 11

The malware has embedded a button called “Open Google Play” that opens the legitimate
Google Play Service:

Figure 12

securityscorecard.com | 5



The switch called “Hide App Icon” can be switched off or on via a function call to setChecked:

Figure 13

The first communication with the C2 server is done using a function called “sendReq”:

Figure 14

Figure 15

The following data will be sent to the C2 server: Android ID, the phone model and
manufacturer, and the Android version. The communication is done via HTTP and then using

securityscorecard.com | 6



WebSockets:

Figure 16

The application uses the Socket.IO library for bidirectional communication, as shown below:

Figure 17

Figure 18

securityscorecard.com | 7



Figure 19

The server response is a JSON that contains a field called “order”. The RAT implements the
following commands:

Figure 20

securityscorecard.com | 8



RAT commands
“x0000ca” command

Another field called “extra” extracted from the JSON can be “camList”, “1”, or “0” (see Figure 21).

Figure 21

The RAT obtains the number of available physical cameras using the getNumberOfCameras
method and extracts information about them using getCameraInfo:

Figure 22

securityscorecard.com | 9



Figure 23

The application can take photos using the front and back cameras, depending on the “extra”
field:

Figure 24

“x0000cl” command

The malware steals the phone calls logs by parsing “content://call_log/calls” and extracting
multiple columns:

securityscorecard.com | 10



Figure 25

“x0000cn” command

The RAT retrieves the phone contacts and constructs a JSON that contains all of them:

Figure 26

“x0000fm” command

This command is utilized to list all files in a directory and to exfiltrate a file chosen by the C2
server. The field called “path” extracted from the JSON can be a file or a folder:

Figure 27

If a directory is specified, the app lists the files in the directory using the listFiles function:

securityscorecard.com | 11



Figure 28

The malware can exfiltrate a file specified by C2 using the same command:

Figure 29

securityscorecard.com | 12



“x0000lm” command

The application obtains a handle to the location service and verifies if the GPS and network
location providers are enabled. The phone’s location is obtained using the
requestLocationUpdates and getLastKnownLocation methods:

Figure 30

Figure 31

securityscorecard.com | 13



The latitude and longitude are obtained using the getLatitude and getLongitude functions:

Figure 32

Figure 33

“x0000mc” command

The JSON field called “sec” contains the number of seconds that will be passed to the
Timer.schedule function:

Figure 34

The malware creates an MP3 file in the cache directory containing the recording using the
phone’s microphone (Figure 35).

Figure 35

securityscorecard.com | 14



“x0000sm” command

The field called “extra” can be set to “ls” or “sendSMS”, and other two fields called “to” and “sms”
contain a phone number and an SMSmessage that will be sent to this number:

Figure 36

The application retrieves all Inbox SMSmessages from “content://sms/inbox”:

Figure 37

The sendTextMessage function is used to send an SMS message to a phone number provided
by the C2 server, as shown in figure 38.

Figure 38

As mentioned in the Socket.IO documentation, at the beginning of the connection, the server
sends information such as the session ID and the “upgrades” array that is displayed below:

securityscorecard.com | 15

https://socket.io/docs/v4/how-it-works


Figure 39

Figure 40

securityscorecard.com | 16



Indicators of Compromise

SHA256

9af5c084b7203741bc26debb6212bf138f3c7a41e04d96948a332be4a842882e

C2 server

http[:]//34.125.188.220[:]50901

securityscorecard.com | 17


