
A technical analysis of the
Quasar-forked RAT called
VoidRAT
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents
Table of contents 1
Executive summary 2
Analysis and findings 2
RAT commands 17
Indicators of Compromise 46

securityscorecard.com | 1



Executive summary
VoidRAT is based on the open-source RAT called Quasar. The configuration is decrypted using
the AES128 algorithm and reveals the C2 server, the build version, the mutex name, and the
name of the scheduled task that will be created. The malware steals information from web
browsers and applications such as FileZilla and WinSCP. It also implements a keylogger
functionality that saves and exfiltrates the pressed keys. The RAT handles multiple commands to
retrieve the list of running processes, the Windows version and architecture, information about
the antivirus and the firewall, and so on. The malware establishes persistence on the infected
host by creating a scheduled task and a Run registry key entry.

Analysis and findings
SHA256: 36c483343398ea17347a4be4360ad4fb5f693b71cb61a5ecd919058a42884a06

The malware was deobfuscated using the de4dot tool. It implements a function that catches
the unhandled exceptions, as shown below:

Figure 1

For any of these unhandled exceptions, the process creates a batch file in the Temp directory
that is used to restart the initial executable and deletes itself afterwards:

Figure 2

securityscorecard.com | 2

https://github.com/de4dot/de4dot


Figure 3

Figure 4

The encrypted configuration is borrowed from Quasar and contains information such as the C2
server, the mutex name, the scheduled task name, and the keylogger’s directory name:

Figure 5

securityscorecard.com | 3



Figure 6

The configuration parameters are decrypted using the AES128 algorithm. As we can see in the
figure below, the AES salt is the same as for Quasar:

Figure 7

securityscorecard.com | 4

https://raw.githubusercontent.com/JPCERTCC/QuasarRAT-Analysis/main/slides/Botconf2020-Hunting_the_Quasar_Family.pdf


Figure 8

As we’ve already mentioned, the C2 server “rick63.publicvm[.]com[:]6750” is decrypted using the
AES algorithm (see Figure 9).

Figure 9

The executable verifies if the processor architecture is 64-bit and sets a variable to the System
or Program Files directory, as displayed in Figure 10.

Figure 10

securityscorecard.com | 5



The malware creates a mutex called “QSR_MUTEX_yvr8DKPNa7TF7IQF9u” and decodes two
configuration values from Base64:

Figure 11

Figure 12

Figure 13

securityscorecard.com | 6



The binary retrieves the public IP address and other information by sending a GET request to
http://ip-api[.]com/json/, http://freegeoip[.]net/xml/, or http://api.ipify[.]org/, depending on if the
previous requests were unsuccessful:

Figure 14

Figure 15

securityscorecard.com | 7



Figure 16

Figure 17

securityscorecard.com | 8



If the “AppData\Roaming\SubDir” directory doesn’t exist, it is created, and the malware copies
itself as “Client.exe” within the new directory. The current process is killed, and the newly
created executable is spawned:

Figure 18

Figure 19

securityscorecard.com | 9



Whether the current user belongs to the Administrators group, the process creates a scheduled
task called “Quasar Client Startup”. An entry with the same name is created under the Run
registry key in any case:

Figure 20

Figure 21

Figure 22

securityscorecard.com | 10



A new thread that runs in the background and handles the SetUserStatus command is created:

Figure 23

Another thread executes the keylogger functionality:

Figure 24

Figure 25

The malware creates a directory called “Logs” in the AppData folder (Figure 26).

securityscorecard.com | 11



Figure 26

The binary developed three functions called “OnKeyDown”, “OnKeyUp”, and “OnKeyPress” that
log the pressed keys:

Figure 27

securityscorecard.com | 12



Figure 28

The GetWindowText method is utilized to record the name of the specified window's title bar:

Figure 29

A file with the name derived from the current date is created in the Logs directory. It stores the
pressed keys, which can also be special characters:

securityscorecard.com | 13



Figure 30

Figure 31

Figure 32

securityscorecard.com | 14



The logs are encrypted using the AES128 algorithm before they’re written to the file, as shown
below:

Figure 33

The malicious process creates a socket and connects to the C2 server via a function call to
Connect:

Figure 34

securityscorecard.com | 15



Figure 35

The following commands are implemented. We will give details about most of them and
highlight the commonalities when that's the case.

Figure 36

securityscorecard.com | 16



Figure 37

RAT commands
GetAuthentication

This is the first command issued by the C2 server. The malware replies with a packet that
contains the operating system version, information about the public IP location, the username,
and the computer name:

Figure 38

DoDownloadAndExecute

The process downloads a random executable from an URL specified by the C2 server. It creates
a file in the Temp folder and executes it:

securityscorecard.com | 17



Figure 39

Figure 40

DoUploadAndExecute

This command is similar to the above; however, the newly created executable is populated with
content received from the C2 server, as highlighted below:

securityscorecard.com | 18



Figure 41

Figure 42

The DoDownloadFile and DoUploadFile commands have the same functionality, but they don’t
execute the new file.

DoClientUninstall

The command implements the uninstall routine. It creates a batch file that is used to delete the

securityscorecard.com | 19



scheduled task, the entry added under the Run registry key, the initial executable, the
keylogger’s Logs directory, and the batch file itself at the end:

Figure 43

Figure 44

Figure 45

securityscorecard.com | 20



Figure 46

DoAskElevate

The malicious binary uses the Runas tool to ask the user to run the executable with elevated
privileges (see Figure 47).

Figure 47

securityscorecard.com | 21



GetDesktop

The process takes a screenshot of the user’s Desktop, as displayed in the figures below.

Figure 48

Figure 49

GetWebcam

The process captures video from the webcam using AForge.NET framework:

Figure 50

securityscorecard.com | 22



DoWebcamStop

The malware stops the webcam using the Stop method:

Figure 51

GetProcesses

The GetProcesses method is utilized to extract a list of running processes. The client response
contains the processes ID, name, and the caption of the main window:

Figure 52

DoProcessKill

The binary stops a target process using the Kill function:

Figure 53

securityscorecard.com | 23



DoProcessStart

The command is used to spawn an executable specified by the C2 server (Figure 54).

Figure 54

GetDrives

The executable obtains a list of logical drives and constructs a list based on their name, type,
and format:

Figure 55

securityscorecard.com | 24



GetDirectory

The process retrieves the tree structure of a specific directory using the GetFiles and
GetDirectories methods:

Figure 56

DoMouseEvent

The malware can move the mouse cursor using the mouse_event and SetCursorPos functions.
It can activate screen saving via a function call to SystemParametersInfo:

securityscorecard.com | 25



Figure 57

Figure 58

Figure 59

securityscorecard.com | 26



DoKeyboardEvent

The keybd_event method is used to simulate a key press or release, as shown below:

Figure 60

Figure 61

GetSystemInfo

The malware extracts the processor name, the RAM amount, GPU information, the username,
the computer name, the domain name, the system’s uptime, the MAC address, the private and
public IP address, the antivirus, and the firewall:

Figure 62

securityscorecard.com | 27



Figure 63

Figure 64

securityscorecard.com | 28



Figure 65

Figure 66

securityscorecard.com | 29



DoVisitWebsite

The process sends a GET request to an URL specified by the C2 server. The user agent is
hard-coded (Figure 67).

Figure 67

DoShowMessageBox

The binary displays a message box using the MessageBox.Show method, as highlighted in the
figure below.

Figure 68

Figure 69

DoClientUpdate

The malware can update itself by downloading an executable from a remote URL (see Figure
70).

securityscorecard.com | 30



Figure 70

GetWebcams

The binary retrieves the name of the available webcams from the VideoCapabilities property:

Figure 71

GetMonitors

The number of monitors is extracted from the Screen.AllScreens property:

Figure 72

securityscorecard.com | 31



DoShellExecute

The executable runs the command sent by the C2 server using cmd.exe:

Figure 73

Figure 74

DoPathRename

This command can be utilized to rename a file or directory using the Move function (Figure 75).

securityscorecard.com | 32



Figure 75

DoPathDelete

The Delete method is used to delete a specific file or directory:

Figure 76

DoShutdownAction

The malware can restart, shut down, and switch the computer to standby mode using this
command:

securityscorecard.com | 33



Figure 77

GetStartupItems

The malicious process obtains the Run and RunOnce Registry keys depending on the
processor’s architecture:

Figure 78

securityscorecard.com | 34



DoStartupItemAdd

The malware can add registry values under the Run and RunOnce keys and can create
Windows URL shortcut files in the Startup folder:

Figure 79

DoStartupItemRemove

The command is the opposite of the above and is used to delete persistence entries (Figure 80).

Figure 80

securityscorecard.com | 35



DoDownloadFileCancel

This command is used to signal that the file download operation was canceled:

Figure 81

DoLoadRegistryKey

The process retrieves the values and subkeys found under the Registry key mentioned in the
command:

Figure 82

The following commands are similar and self-explanatory: DoCreateRegistryKey,
DoDeleteRegistryKey, DoRenameRegistryKey, DoCreateRegistryValue, DoDeleteRegistryValue,
DoRenameRegistryValue, and DoChangeRegistryValue.

GetKeyloggerLogs

The binary exfiltrates the files located in the keylogger’s Logs directory:

Figure 83

securityscorecard.com | 36



Figure 84

GetPasswords

This command is utilized to steal credentials from browsers and other applications:

Figure 85

The malware opens the “Login Data” and “Cookies” databases from Google Chrome, Opera, and
Yandex:

securityscorecard.com | 37



Figure 86

Figure 87

Figure 88

The malicious binary retrieves the “origin_url”, “username_value”, and “password_value”
columns from the “Login Data” database. The password field is decrypted using the
ProtectedData.Unprotect method, as shown below:

securityscorecard.com | 38



Figure 89

Figure 90

securityscorecard.com | 39



Figure 91

It obtains Internet Explorer passwords by querying the “Software\Microsoft\Internet
Explorer\IntelliForms\Storage2” registry key:

Figure 92

securityscorecard.com | 40



Figure 93

The Firefox credentials and cookies are extracted from the “logins.json” and “cookies.sqlite” files:

Figure 94

securityscorecard.com | 41



Figure 95

The executable extracts the “Host”, “Port”, “User”, and “Pass” values from XML files
corresponding to FileZilla:

Figure 96

securityscorecard.com | 42



Figure 97

The process retrieves and decrypts credentials fromWinSCP, an open-source FTP client (Figure
98).

Figure 98

ReverseProxyConnect

The malware implements the reverse proxy using this command, together with
ReverseProxyData, and ReverseProxyDisconnect, as shown below:

securityscorecard.com | 43



Figure 99

Figure 100

GetConnections

The GetExtendedTcpTable API is used to obtain the list of established TCP connections:

securityscorecard.com | 44



Figure 101

Figure 102

securityscorecard.com | 45



Indicators of Compromise
SHA256

36c483343398ea17347a4be4360ad4fb5f693b71cb61a5ecd919058a42884a06

C2 server

rick63.publicvm[.]com[:]6750

Mutex

QSR_MUTEX_yvr8DKPNa7TF7IQF9u

Scheduled task and Run registry key

Quasar Client Startup

securityscorecard.com | 46


