A Detailed Analysis of a
New Stealer Called
Stealerium

Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

' L]
{®} SecurityScorecard

Tower 49

12 E 49+ Street
Suite 15-001

New York, NY 10017
1.800.682.1707

JE
Table of contents

Table of contents 1
Executive summary 2
Analysis and findings 2
Anti-Analysis Techniques 4
Information Stealing - Browsers 9
Information Stealing — Different Applications 19
Information Stealing — Cryptocurrency Wallets 29
Information Stealing — VPN Software 33
Information Stealing — Host Information 34
Indicators of Compromise 52

"‘ 0
) SecurityScorecard securityscorecard.com | 1

Executive summary

Stealerium is an open-source stealer available on GitHub. The malware steals information from
browsers, cryptocurrency wallets, and applications such as Discord, Pidgin, Outlook, Telegram,
Skype, Element, Signal, Tox, Steam, Minecraft, and VPN clients. The binary also gathers data
about the infected host, such as the running processes, Desktop and webcam screenshots,
Wi-Fi networks, the Windows product key, and the public and private IP address. The stealer
employs multiple anti-analysis techniques, such as detecting virtual machines, sandboxes, and
malware analysis tools and checking if the process is being debugged. The malware also
embedded a keylogger module and a clipper module that replaces cryptocurrency wallet
addresses with the threat actor’'s addresses if the victim makes a transaction. The stolen
information is sent to a Discord channel using a Discord Webhook.

Analysis and findings

SHA256: 7B19B3064720EFA6AG5F69CE187ABBDOB812BFOF9IDDE70088AFBB693814C930

The process creates a mutex called “BOP2018UODTBXZ90M2YK" to ensure that only one
instance of the malware is running at a single time:

ead thread =
thread2 =

3

= SecurityProtocolType.

Figure 1

Figure 2

The malware implements a function called “InitWorkDir” that creates a directory in the
LocalAppData folder that is hidden. The directory name is the MD5 hash of the mutex name
concatenated with the username, computer name, system language, CPU name, and GPU
name, as shown below:

"‘ °
o) SecurityScorecard securityscorecard.com | 2

Figure 4

result;

Figure 5

The stealer embedded an encrypted Discord webhook in its configuration. It verifies if the
webhook contains the “---" string and kills the current process using a batch file created in the
temporary folder if true:

"‘ °
o) SecurityScorecard securityscorecard.com | 3

~ streamWriter =

streamWriter.|

Figure 7
Anti-Analysis Techniques

The executable implements a few anti-analysis mechanisms: a check if the public IP is hosting,
colocated, or a data center; the detection of running malware analysis processes; the detection
of virtual machines/sandboxes and the verification that the process is being debugged:

Figure 8

"‘ °
o) SecurityScorecard securityscorecard.com | 4

Figure 9

The binary performs a network request to a legitimate geolocation service and extracts the
“hosting” field from the response. The URL is decrypted using the AES256 algorithm with the
key that is hard-coded to “http[:]//ip-api[]Jcom/line/?fields=hosting” (see figure 11).

Figure 10

"‘ °
o) SecurityScorecard securityscorecard.com | 5

[] bytesToBeDecrypted)

yStream

rijndaelManaged

am, rijndaelManaged.

te(bytesToBeDecrypted, @, bytesToBeDecrypted. ' H

(s

Figure

The stealer searches for malware analysis tools such as Process Hacker, Wireshark, and TcpView,
as highlighted in figure 12.

processes. ((Process process) => selectedProcessList. (process.

Figure 12

The malware verifies that it's not running in a virtual machine such as VirtualBox or VMware:

Figure 13

"‘ °
o) SecurityScorecard securityscorecard.com | 6

The malicious process checks for the presence of multiple DLLs corresponding to sandboxes
(see figure 14).

Figure 14

The CheckRemoteDebuggerPresent API is utilized to verify whether the current process is
being debugged:

result;

result;

Figure 15

A fake error message is displayed, and the process is terminated if any of the above checks pass:

xButtons. » MessageBoxIcon.

Figure 16

The webhook and crypto wallet addresses are Base64-decoded and then decrypted using
AES256:

"‘ .
o) SecurityScorecard securityscorecard.com | 7

Figure 17

g(value.Replace(“ENCRYPTED: ™, "")));|

Figure 18

The process verifies whether the Discord webhook is valid or not:

t webClient =

webClient.Dow

Figure 19

The malicious binary creates a subfolder called “Username@Computername_Language” in the
directory created by the InitWorkDir function (see figure 20).

"‘ .
o) SecurityScorecard securityscorecard.com | 8

Figure 20

Information Stealing - Browsers

The stealer targets multiple Chromium-based browsers (figure 21). Most can be found in the
LocalAppData directory:

[BRERE . 5Chromiunpswpaths)]

-
L |
@I
@
-
@
@I
@
C
@
@
A
-
-
-
-
-
(=]
-
-
-
-
-
-
-
-
-
-
-
@

Figure 21

"‘ .
o) SecurityScorecard securityscorecard.com | 9

(path))
str - (path))

text2 = sSavePath + "\\" + Cr
(text2);

Figure 22

The malware wants to steal credit cards, passwords, cookies, browser history, and bookmarks.
The stolen information is saved in “txt” files:

(sHistory, text:
(sHistory2,
(aFills, text2 +
(bBookmarks, text2

Figure 23

The malicious process extracts credit cards’ information from the “credit_cards” table, which is
located in the “Web Data” database. The credit card number is decrypted using the Master key
extracted from the machine by calling the DpapiDecrypt function:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 10

shebData)

(sWebData, "

lebData, sqlite.Get

sLoginData,
Password. S

);
(sPassword), masterKey));

tes(sPassword), DE

Figure 25

sLocalStatefe

teFolder

stateFolder +

alstateFolder +

Figure 26

"‘ 3
<$) SecurityScorecard securityscorecard.com | 11

It extracts the URLs, usernames, and passwords from the “logins” table found in the “Login
Data"” database. The password is decrypted using the Master key, as shown below:

sLoginData)

{sLoginData, "logins");

(sLoginData,

Figure 27

The ScanData function is used to verify whether the URLs contain banking services,
cryptocurrency, and adult content:

value)

(value);
(value);
(value);

Figure 28

Figure 29

"‘ 3
<$) SecurityScorecard securityscorecard.com | 12

The binary extracts and decrypts the cookies from the “Cookies” database:

sCookie)

(sCookie, "

(sCookie, sql

i(item);

Figure 30

The stealer also targets the Browser History by retrieving some fields from the “urls” table found
in the “History” database (see figure 31).

sHistory)

(sHistory, "

< sqlite.

Figure 31

"‘ 3
<$) SecurityScorecard securityscorecard.com | 13

The “History” database also stores the “downloads” table that contains the Chromium-based
browsers downloads:

sHistory)

>();

(sHistory, "

Figure 32

The malware steals the autofill information from the “autofill” table found in the “Web Data”
database:

sWebData)

sqLite = = (sWebData, "aL
(sqLite ==

list;

Figure 33

"‘ .
o) SecurityScorecard securityscorecard.com | 14

Lastly, the process extracts the browser's Bookmarks:

(sBookmarks, Er

Figure 34

The execution flow for Microsoft Edge is similar to the one presented so far and will not be
explained. The browsers based on the Gecko browser engine are also a target for this stealer.

The binary traverses the “Profiles” directory and extracts bookmarks, cookies, browser history,
and passwords (see figure 35).

sSavePath)

foreach (text SGeckoBrowserPaths))

ssavePath

Figure 35

"‘ 3
<$) SecurityScorecard securityscorecard.com | 15

The Bookmarks are extracted from the “moz_bookmarks” table found in the “places.sglite”
database:

path2 =

(path2))

Figure 37

The “moz_cookies” table located in the “cookies.sqlite” database contains the following fields
that are retrieved: HostKey, Name, Value, Path, and ExpiresUtc.

"‘ 3
<$) SecurityScorecard securityscorecard.com | 16

path2 = path + "

Figure 39

The malicious process retrieves the browser history from the “moz_places” table found in the
“places.sqlite” database:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 17

Figure 40

The malware copies the following files: “key3.db”, “key4.db”, “logins.json”, and “cert9.db”. The
LoadLibrary API is used to load the “mozgluedll” and “nss3.dll” modules into the process's
address space. Finally, the executable obtains the “hostname”, “encryptedUsername”, and

“encryptedPassword” fields from the “logins.json” file and decrypts the last two by calling the
PKk11SdrDecrypt function:

Figure 41

"‘ 3
<$) SecurityScorecard securityscorecard.com | 18

Figure 42

(sPath + "
(sPath +

Figure 43

Information Stealing - Different Applications

The process is looking for files having the “log” and “Idb” extensions in multiple Discord
directories. It extracts the Discord tokens and ensures they're valid:

Figure 44

"‘ 3
<$) SecurityScorecard securityscorecard.com | 19

[] lcDicordTokens, sSavePath)

{lcDicordTokens.

(sSavePath);

str lcDicordTokens)

(sSavePath +

(sSavePath);

sSavePath)

Figure 45

|n

The stealer extracts the Pidgin credentials from a file called “accounts.xml” and collects the chat

logs:

sSavePath)

(sSavePath);
SavePath +

Figure 46

"‘ 3
<$) SecurityScorecard securityscorecard.com | 20

sSavePath)

(
(text))

(text, sSavePath +

Figure 47

Outlook credentials are also a target for the malware. It queries the Windows registry looking
for usernames and passwords that are decrypted by calling the ProtectedData.Unprotect
function:

Figure 48

"‘ 3
<$) SecurityScorecard securityscorecard.com | 21

Figure 49

wvalueHame)

(valueName) ;

[]1 encry

[encrypted.

Figure 50

The binary copies the files corresponding to Telegram sessions to a directory called
“Messenger\Telegram”, as shown below:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 22

Figure 51
0

sByName = P
== @)

result;

(processesByName[

Figure 52

Skype conversation history is also stolen by the malware (see figure 53).

sSavePath)

Figure 53

"‘ 3
<$) SecurityScorecard securityscorecard.com | 23

The Element messaging application is also targeted by the stealer:

(text, sSavePath + “

Figure 54

Multiple directories corresponding to Signal application databases and configuration are copied
to the initially created directory.

sSavePath)

sSavePath + "

, sSavePath + "

, sSavePath + "

, sSavePath + "
1", sSavePath

Figure 55

The Tox directory found in the “%AppData%” folder is copied to the above directory:

sSavePath)

))

, SSavePath);

Figure 56

"‘ °
o) SecurityScorecard securityscorecard.com | 24

The ICQ directory will also be exfiltrated, as displayed in figure 57.

sSavePath)

(text, sSavePath + "

Figure 57

The Steam path is extracted from the “SteamPath” registry value, and every game has a subkey
under the “Software\Valve\Steam\Apps” registry key. The information about the Steam games is
saved in a file called “Apps.txt™

sSavePath)

Figure 58

The malware collects the SSNF files and the Steam configuration files:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 25

Figure 59

The stealer retrieves the files found in the “%AppData%\Ubisoft Game Launcher” folder:

sSavePath)

Figure 60

The files with the “.db” and “.config” extensions from the BattleNET directory are copied to the
stealer’s directory:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 26

The

Figure 61

malicious process creates a directory that stores information related to Minecraft:

sSavePath)

(sSavePath);
(sSavePath);
(sSavePath

(sSaveP -
1= "1"})

(sSavePath);
(sSavePath);

Figure 62

The Minecraft mods and versions files will be saved in “txt” files along with their creation time
extracted using the GetCreationTime function. The files containing “profile”, “options”, and

“servers” will also be exfiltrated:

"‘ 3
<$) SecurityScorecard securityscorecard.com | 27

Figure 63

sSavePath)

Figure 64

"‘ 3
<$) SecurityScorecard securityscorecard.com | 28

If Config.GrabberModule is “1", then the stealer collects the Minecraft logs and screenshots:

sSavePath)

(sSavePath + "
text files)

(text, sSavePath + "\\screenshots\\" . I (text));

Figure 65

Information Stealing - Cryptocurrency Wallets

Stealerium tries to locate cryptocurrency wallets such as Zcash, Armory, and others in the
“%AppData%” folder, and Litecoin, Dash, and Bitcoin wallets in the registry:

sSaveDir)

(sSaveDir);
[]1 array Wallets. letsDi ies)

(sSaveDir, array[1], array[@]);
sWalletRegistry Wallets. >)

(sSaveDir, sWalletRegistry);

(sSaveDir);

Figure 66

"‘ 3
<$) SecurityScorecard securityscorecard.com | 29

Figure 67

The malicious executable copies multiple Chrome browser wallets in a new directory called
“Chrome_Wallet”:

sSaveDir)

(sSaveDir);
[J array

(sSaveDir, arr

== @)

(sSaveDir);

Figure 68

"‘ 3
<$) SecurityScorecard securityscorecard.com | 30

Figure 69

A similar execution flow deals with Microsoft Edge browser wallets, as shown below:

sSaveDir)

(sSaveDir);
[] array in Extensions.EdgeWalle L tories)

(sSaveDir, array[l], array[@]);

== @)

(sSaveDir);

(str + ((ex2

Figure 70

"‘ 3
<$) SecurityScorecard securityscorecard.com | 31

Figure 71

The malware parses the XML files located at "%AppData%\FileZilla\recentservers.xml" and
“AppData\FileZilla\sitemanager.xml”, and extracts the “User”, “Pass”, “Host”, and “Port” fields. The
password is Base64-decoded and is saved together with the username and the URL in a file
called “Hosts.txt™

pPassword)

sSavePath)

(sSavePath);

Figure 72

"‘ 3
<$) SecurityScorecard securityscorecard.com | 32

ssavePath)

Figure 73

Information Stealing - VPN Software

The binary copies the ProtonVPN “user.config” file in a newly created directory called
“VPN\ProtonVPN":

(path})

Figure 74

"‘ 3
<$) SecurityScorecard securityscorecard.com | 33

-
The OpenVPN configuration files will also be exfiltrated (figure 75).

sSavePath)

¢
(path))

(sSavePath + "

(text).

(sSavePath, "profile

Figure 75

The NordVPN username and password can be found in a file called “user.config”. Those values
are Baseb4-decoded and then decrypted via a function call to ProtectedData.Unprotect:

Figure 76

Information Stealing — Host Information

The GetDrives method is utilized to retrieve the removable drives, and the stealer saves the

"‘ °
o) SecurityScorecard securityscorecard.com | 34

-
directory tree of them:

sSavePath)

(DriveInfo drivelInfo

(driveInfo.

(sSavePath, directoryName + ".txt")

Figure 77

A list of running processes is saved in a file called “Process.txt”, and another list that also
contains the caption of the main window of the processes is saved in a file called “Windows.txt":

sSavePath)

(sSavePath + "

process)

(process.

process.

t managementBas

Figure 78

"‘ 3
<$) SecurityScorecard securityscorecard.com | 35

sSavePath)

process

(process

(sSavePath +

Figure 79

The stealer takes a screenshot of the Desktop using the CopyFromScreen method and a
webcam screenshot via a call to capCreateCaptureWindowA:

sSavePath)

bounds = Screen. (:);:
it » bounds.

(bitmap))

3

bitmap.Save(sSavePath + "

Figure 80

"‘ 3
<$) SecurityScorecard securityscorecard.com | 36

sSavePath)

Figure 81

The process extracts the Wi-Fi profiles and passwords and saves them in a file called
“SavedNetworks.txt”. A file called “ScanningNetworks.txt” is populated with nearby Wi-Fi
networks:

Figure 82

"‘ 3
<$) SecurityScorecard securityscorecard.com | 37

The Windows product key is extracted from “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\DigitalProductld” registry value and decoded by a custom algorithm:

[] digitalProductld, L n digitalProductIdversion)

(digitalProductIdVersion

(digitalProductId);

[] digitalProductId)

)digitalProductId]
ctl 52]

» digitalProductId)

Figure 84

If the Config.DebugMode value is 1then the log file called “Stealerium-Latest.log” is copied from
the temporary folder to a file called “Debug.txt™

"‘ 3
<$) SecurityScorecard securityscorecard.com | 38

sSavePath)

, sSavePath);

Figure 85

The malware concatenates data such as the public IP (obtained from icanhazip[.Jcom), private
IP, default gateway, and so on (see figure 86).

sSavePath)

Figure 86

"‘ 3
<$) SecurityScorecard securityscorecard.com | 39

The local IP address is obtained by calling the GetHostEntry function:

(IPAddress ipaddress

(ipaddress.

ipaddress.T

Figure 87

GetAllINetworklnterfaces is utilized to obtain the network interfaces on the local machine. The
gateway addresses are extracted using the GetIPProperties method:

Figure 88

The CPU name, GPU name, and RAM amount are extracted using WMI queries (figure 89).

"‘ °
o) SecurityScorecard securityscorecard.com | 40

Figure 89

The malicious binary retrieves the size of the screen and battery information:

Figure 90

The Clipboard.GetText function is used to save the text data from the Clipboard to a file called
“Clipboard.txt™

"‘ °
o) SecurityScorecard securityscorecard.com | 41

returnValue

cad thread =

1

returnValue

1)
thread.
thread.Start();

thread. n();

returnValue;

Figure 91

A list of applications is saved in a file called “Apps.txt” (see figure 92).

Figure 92

The directory containing the files that will be exfiltrated is compressed to a zip archive. The zip
archive comment contains a lot of information about the local machine, and the zip password is

set to the number of ticks that represent the current date and time:

"‘ °
o) SecurityScorecard securityscorecard.com | 42

Figure 93

The stealer uses the GoFile API to upload the archive to GoFile.io. The UploadFile function
returns an URL that will be uploaded on Discord:

Figure 94

(client.

Figure 95

"‘ °
o) SecurityScorecard securityscorecard.com | 43

The directory called “logs” is also archived to a zip file called “<Current date and time>.zip”",
which is uploaded to GoFile:

Figure 96

The stealer report that is uploaded to Discord via Webhooks is shown below:

Figure 97

"‘ °
o) SecurityScorecard securityscorecard.com | 44

https://discord.com/developers/docs/resources/webhook

Figure 98

The implementation of the functions used to upload the report is presented in the figure below.

nameValueColle

ValueCollection);

Figure 99

The malware establishes persistence by adding an entry to the Run registry key. It also modifies

"‘ °
o) SecurityScorecard securityscorecard.com | 45

the timestamps of the executable file (timestomping):

Figure 100

t, dateTime);
dateTim

Figure 101

The malicious process creates a new keylogger thread and installs a hook procedure by calling
the SetWindowsHookEx API (13 = WH_KEYBOARD_LL):

"‘ °
o) SecurityScorecard securityscorecard.com | 46

Figure 102

Figure 103

GetKeyState is utilized to obtain the status of a specific virtual key (see figure 104).

Figure 104

A virtual-key code is translated into a character value using MapVirtualKey. The binary obtains

"‘ °
o) SecurityScorecard securityscorecard.com | 47

the active input locale identified via a function call to GetKeyboardlLayout. The keys that were
pressed are saved in a variable called “KeylLogs”:

(vkCode, 8U);

Figure 105

The stealer verifies if the active window title contains strings such as “facebook”, “chat’,
“password”, “sell”, and others (figure 106). For each of these windows, it takes a screenshot and
records the keys pressed, as shown below:

Figure 106

"‘ °
o) SecurityScorecard securityscorecard.com | 48

Figure 107

Another functionality is checking if the active window contains adult content. For each of these
windows, the process takes screenshots of the window and the webcam:

Figure 108

Finally, the malware verifies if the active window name contains strings referring to
cryptocurrencies:

"‘ °
o) SecurityScorecard securityscorecard.com | 49

s(value))

Figure 110

Figure 11

"‘ 3
<$) SecurityScorecard securityscorecard.com | 50

The executable retrieves text data from the Clipboard and verifies if it contains any wallet
addresses, which will be replaced by the threat actor’s wallet addresses:

clipboardText.

Figure 112

"‘ 3
<$) SecurityScorecard securityscorecard.com | 51

Indicators of Compromise
SHA256

7B19B3064720EFAGAGSFEOC6187ABBDOB812BFOF91DDE70088AFBB693814C930
Files created

%LocalAppData%\<MD5 hash>Y

Mutex

BOP2018UODTBXZ90M2YK

Registry key
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\<Executable name>
URLs

http[:]//icanhazip[.]Jcom

http[:]/ip-apil.]Jcom/line/?fields=hosting

https[:]/discord[]Jcom/api/webhooks/1060907354985615390/WCikcIDbosEelSq4SgGzLPOZKwdw
a0gOav5Tr-U4jr2MRIlUPA08TM1-B748x100k4W1

https[:]/api.mylnikov[.]org/geolocation/wifi?v=11&bssid=

"‘ .
<$) SecurityScorecard securityscorecard.com | 52

