
A Detailed Analysis of a
New Stealer Called
Stealerium
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707

Table of contents
Table of contents 1

Executive summary 2

Analysis and findings 2

Anti-Analysis Techniques 4

Information Stealing - Browsers 9

Information Stealing – Different Applications 19

Information Stealing – Cryptocurrency Wallets 29

Information Stealing – VPN Software 33

Information Stealing – Host Information 34

Indicators of Compromise 52

securityscorecard.com | 1

Executive summary
Stealerium is an open-source stealer available on GitHub. The malware steals information from
browsers, cryptocurrency wallets, and applications such as Discord, Pidgin, Outlook, Telegram,
Skype, Element, Signal, Tox, Steam, Minecraft, and VPN clients. The binary also gathers data
about the infected host, such as the running processes, Desktop and webcam screenshots,
Wi-Fi networks, the Windows product key, and the public and private IP address. The stealer
employs multiple anti-analysis techniques, such as detecting virtual machines, sandboxes, and
malware analysis tools and checking if the process is being debugged. The malware also
embedded a keylogger module and a clipper module that replaces cryptocurrency wallet
addresses with the threat actor’s addresses if the victim makes a transaction. The stolen
information is sent to a Discord channel using a Discord Webhook.

Analysis and findings
SHA256: 7B19B3064720EFA6A65F69C6187ABBD0B812BF9F91DDE70088AFBB693814C930

The process creates a mutex called “B0P2018UODTBXZ90M2YK” to ensure that only one
instance of the malware is running at a single time:

Figure 1

Figure 2

The malware implements a function called “InitWorkDir” that creates a directory in the
LocalAppData folder that is hidden. The directory name is the MD5 hash of the mutex name
concatenated with the username, computer name, system language, CPU name, and GPU
name, as shown below:

securityscorecard.com | 2

Figure 3

Figure 4

Figure 5

The stealer embedded an encrypted Discord webhook in its configuration. It verifies if the
webhook contains the “---” string and kills the current process using a batch file created in the
temporary folder if true:

securityscorecard.com | 3

Figure 6

Figure 7

Anti-Analysis Techniques
The executable implements a few anti-analysis mechanisms: a check if the public IP is hosting,
colocated, or a data center; the detection of running malware analysis processes; the detection
of virtual machines/sandboxes and the verification that the process is being debugged:

Figure 8

securityscorecard.com | 4

Figure 9

The binary performs a network request to a legitimate geolocation service and extracts the
“hosting” field from the response. The URL is decrypted using the AES256 algorithm with the
key that is hard-coded to “http[:]//ip-api[.]com/line/?fields=hosting” (see figure 11).

Figure 10

securityscorecard.com | 5

Figure 11

The stealer searches for malware analysis tools such as Process Hacker, Wireshark, and TcpView,
as highlighted in figure 12.

Figure 12

The malware verifies that it’s not running in a virtual machine such as VirtualBox or VMware:

Figure 13

securityscorecard.com | 6

The malicious process checks for the presence of multiple DLLs corresponding to sandboxes
(see figure 14).

Figure 14

The CheckRemoteDebuggerPresent API is utilized to verify whether the current process is
being debugged:

Figure 15

A fake error message is displayed, and the process is terminated if any of the above checks pass:

Figure 16

The webhook and crypto wallet addresses are Base64-decoded and then decrypted using
AES256:

securityscorecard.com | 7

Figure 17

Figure 18

The process verifies whether the Discord webhook is valid or not:

Figure 19

The malicious binary creates a subfolder called “Username@Computername_Language” in the
directory created by the InitWorkDir function (see figure 20).

securityscorecard.com | 8

Figure 20

Information Stealing - Browsers
The stealer targets multiple Chromium-based browsers (figure 21). Most can be found in the
LocalAppData directory:

Figure 21

securityscorecard.com | 9

Figure 22

The malware wants to steal credit cards, passwords, cookies, browser history, and bookmarks.
The stolen information is saved in “.txt” files:

Figure 23

The malicious process extracts credit cards’ information from the “credit_cards” table, which is
located in the “Web Data” database. The credit card number is decrypted using the Master key
extracted from the machine by calling the DpapiDecrypt function:

securityscorecard.com | 10

Figure 24

Figure 25

Figure 26

securityscorecard.com | 11

It extracts the URLs, usernames, and passwords from the “logins” table found in the “Login
Data” database. The password is decrypted using the Master key, as shown below:

Figure 27

The ScanData function is used to verify whether the URLs contain banking services,
cryptocurrency, and adult content:

Figure 28

Figure 29

securityscorecard.com | 12

The binary extracts and decrypts the cookies from the “Cookies” database:

Figure 30

The stealer also targets the Browser History by retrieving some fields from the “urls” table found
in the “History” database (see figure 31).

Figure 31

securityscorecard.com | 13

The “History” database also stores the “downloads” table that contains the Chromium-based
browsers downloads:

Figure 32

The malware steals the autofill information from the “autofill” table found in the “Web Data”
database:

Figure 33

securityscorecard.com | 14

Lastly, the process extracts the browser’s Bookmarks:

Figure 34

The execution flow for Microsoft Edge is similar to the one presented so far and will not be
explained. The browsers based on the Gecko browser engine are also a target for this stealer.

The binary traverses the “Profiles” directory and extracts bookmarks, cookies, browser history,
and passwords (see figure 35).

Figure 35

securityscorecard.com | 15

The Bookmarks are extracted from the “moz_bookmarks” table found in the “places.sqlite”
database:

Figure 36

Figure 37

The “moz_cookies” table located in the “cookies.sqlite” database contains the following fields
that are retrieved: HostKey, Name, Value, Path, and ExpiresUtc.

securityscorecard.com | 16

Figure 38

Figure 39

The malicious process retrieves the browser history from the “moz_places” table found in the
“places.sqlite” database:

securityscorecard.com | 17

Figure 40

The malware copies the following files: “key3.db”, “key4.db”, “logins.json”, and “cert9.db”. The
LoadLibrary API is used to load the “mozglue.dll” and “nss3.dll” modules into the process's
address space. Finally, the executable obtains the “hostname”, “encryptedUsername”, and
“encryptedPassword” fields from the “logins.json” file and decrypts the last two by calling the
Pk11SdrDecrypt function:

Figure 41

securityscorecard.com | 18

Figure 42

Figure 43

Information Stealing – Different Applications
The process is looking for files having the “.log” and “.ldb” extensions in multiple Discord
directories. It extracts the Discord tokens and ensures they’re valid:

Figure 44

securityscorecard.com | 19

Figure 45

The stealer extracts the Pidgin credentials from a file called “accounts.xml” and collects the chat
logs:

Figure 46

securityscorecard.com | 20

Figure 47

Outlook credentials are also a target for the malware. It queries the Windows registry looking
for usernames and passwords that are decrypted by calling the ProtectedData.Unprotect
function:

Figure 48

securityscorecard.com | 21

Figure 49

Figure 50

The binary copies the files corresponding to Telegram sessions to a directory called
“Messenger\Telegram”, as shown below:

securityscorecard.com | 22

Figure 51

Figure 52

Skype conversation history is also stolen by the malware (see figure 53).

Figure 53

securityscorecard.com | 23

The Element messaging application is also targeted by the stealer:

Figure 54

Multiple directories corresponding to Signal application databases and configuration are copied
to the initially created directory.

Figure 55

The Tox directory found in the “%AppData%” folder is copied to the above directory:

Figure 56

securityscorecard.com | 24

The ICQ directory will also be exfiltrated, as displayed in figure 57.

Figure 57

The Steam path is extracted from the “SteamPath” registry value, and every game has a subkey
under the “Software\Valve\Steam\Apps” registry key. The information about the Steam games is
saved in a file called “Apps.txt”:

Figure 58

The malware collects the SSNF files and the Steam configuration files:

securityscorecard.com | 25

Figure 59

The stealer retrieves the files found in the “%AppData%\Ubisoft Game Launcher” folder:

Figure 60

The files with the “.db” and “.config” extensions from the BattleNET directory are copied to the
stealer’s directory:

securityscorecard.com | 26

Figure 61

The malicious process creates a directory that stores information related to Minecraft:

Figure 62

The Minecraft mods and versions files will be saved in “.txt” files along with their creation time
extracted using the GetCreationTime function. The files containing “profile”, “options”, and
“servers” will also be exfiltrated:

securityscorecard.com | 27

Figure 63

Figure 64

securityscorecard.com | 28

If Config.GrabberModule is “1”, then the stealer collects the Minecraft logs and screenshots:

Figure 65

Information Stealing – Cryptocurrency Wallets
Stealerium tries to locate cryptocurrency wallets such as Zcash, Armory, and others in the
“%AppData%” folder, and Litecoin, Dash, and Bitcoin wallets in the registry:

Figure 66

securityscorecard.com | 29

Figure 67

The malicious executable copies multiple Chrome browser wallets in a new directory called
“Chrome_Wallet”:

Figure 68

securityscorecard.com | 30

Figure 69

A similar execution flow deals with Microsoft Edge browser wallets, as shown below:

Figure 70

securityscorecard.com | 31

Figure 71

The malware parses the XML files located at "%AppData%\FileZilla\recentservers.xml" and
“AppData\FileZilla\sitemanager.xml”, and extracts the “User”, “Pass”, “Host”, and “Port” fields. The
password is Base64-decoded and is saved together with the username and the URL in a file
called “Hosts.txt”:

Figure 72

securityscorecard.com | 32

Figure 73

Information Stealing – VPN Software
The binary copies the ProtonVPN “user.config” file in a newly created directory called
“VPN\ProtonVPN”:

Figure 74

securityscorecard.com | 33

The OpenVPN configuration files will also be exfiltrated (figure 75).

Figure 75

The NordVPN username and password can be found in a file called “user.config”. Those values
are Base64-decoded and then decrypted via a function call to ProtectedData.Unprotect:

Figure 76

Information Stealing – Host Information
The GetDrives method is utilized to retrieve the removable drives, and the stealer saves the

securityscorecard.com | 34

directory tree of them:

Figure 77

A list of running processes is saved in a file called “Process.txt”, and another list that also
contains the caption of the main window of the processes is saved in a file called “Windows.txt”:

Figure 78

securityscorecard.com | 35

Figure 79

The stealer takes a screenshot of the Desktop using the CopyFromScreen method and a
webcam screenshot via a call to capCreateCaptureWindowA:

Figure 80

securityscorecard.com | 36

Figure 81

The process extracts the Wi-Fi profiles and passwords and saves them in a file called
“SavedNetworks.txt”. A file called “ScanningNetworks.txt” is populated with nearby Wi-Fi
networks:

Figure 82

securityscorecard.com | 37

The Windows product key is extracted from “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\DigitalProductId” registry value and decoded by a custom algorithm:

Figure 83

Figure 84

If the Config.DebugMode value is 1 then the log file called “Stealerium-Latest.log” is copied from
the temporary folder to a file called “Debug.txt”:

securityscorecard.com | 38

Figure 85

The malware concatenates data such as the public IP (obtained from icanhazip[.]com), private
IP, default gateway, and so on (see figure 86).

Figure 86

securityscorecard.com | 39

The local IP address is obtained by calling the GetHostEntry function:

Figure 87

GetAllNetworkInterfaces is utilized to obtain the network interfaces on the local machine. The
gateway addresses are extracted using the GetIPProperties method:

Figure 88

The CPU name, GPU name, and RAM amount are extracted using WMI queries (figure 89).

securityscorecard.com | 40

Figure 89

The malicious binary retrieves the size of the screen and battery information:

Figure 90

The Clipboard.GetText function is used to save the text data from the Clipboard to a file called
“Clipboard.txt”:

securityscorecard.com | 41

Figure 91

A list of applications is saved in a file called “Apps.txt” (see figure 92).

Figure 92

The directory containing the files that will be exfiltrated is compressed to a zip archive. The zip
archive comment contains a lot of information about the local machine, and the zip password is
set to the number of ticks that represent the current date and time:

securityscorecard.com | 42

Figure 93

The stealer uses the GoFile API to upload the archive to GoFile.io. The UploadFile function
returns an URL that will be uploaded on Discord:

Figure 94

Figure 95

securityscorecard.com | 43

The directory called “logs” is also archived to a zip file called “<Current date and time>.zip”,
which is uploaded to GoFile:

Figure 96

The stealer report that is uploaded to Discord via Webhooks is shown below:

Figure 97

securityscorecard.com | 44

https://discord.com/developers/docs/resources/webhook

Figure 98

The implementation of the functions used to upload the report is presented in the figure below.

Figure 99

The malware establishes persistence by adding an entry to the Run registry key. It also modifies

securityscorecard.com | 45

the timestamps of the executable file (timestomping):

Figure 100

Figure 101

The malicious process creates a new keylogger thread and installs a hook procedure by calling
the SetWindowsHookEx API (13 = WH_KEYBOARD_LL):

securityscorecard.com | 46

Figure 102

Figure 103

GetKeyState is utilized to obtain the status of a specific virtual key (see figure 104).

Figure 104

A virtual-key code is translated into a character value using MapVirtualKey. The binary obtains

securityscorecard.com | 47

the active input locale identified via a function call to GetKeyboardLayout. The keys that were
pressed are saved in a variable called “KeyLogs”:

Figure 105

The stealer verifies if the active window title contains strings such as “facebook”, “chat”,
“password”, “sell”, and others (figure 106). For each of these windows, it takes a screenshot and
records the keys pressed, as shown below:

Figure 106

securityscorecard.com | 48

Figure 107

Another functionality is checking if the active window contains adult content. For each of these
windows, the process takes screenshots of the window and the webcam:

Figure 108

Finally, the malware verifies if the active window name contains strings referring to
cryptocurrencies:

securityscorecard.com | 49

Figure 109

Figure 110

Figure 111

securityscorecard.com | 50

The executable retrieves text data from the Clipboard and verifies if it contains any wallet
addresses, which will be replaced by the threat actor’s wallet addresses:

Figure 112

securityscorecard.com | 51

Indicators of Compromise

SHA256

7B19B3064720EFA6A65F69C6187ABBD0B812BF9F91DDE70088AFBB693814C930

Files created

%LocalAppData%\<MD5 hash>*

Mutex

B0P2018UODTBXZ90M2YK

Registry key

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\<Executable name>

URLs

http[:]//icanhazip[.]com

http[:]//ip-api[.]com/line/?fields=hosting

https[:]//discord[.]com/api/webhooks/1060907354985615390/WCikcIDbosEe1Sq4SgGzLPOZKwdw
aOgOav5Tr-U4jr2MRIIuPAo8Tm1-B748x10ok4W1

https[:]//api.mylnikov[.]org/geolocation/wifi?v=1.1&bssid=

securityscorecard.com | 52

