

SecurityScorecard.com
 info@securityscorecard.com

Tower 49

12 E 49th Street
Suite 15-001

New York, NY 10017
1.800.682.1707

A Detailed Analysis of the
Gafgyt Malware Targeting
IoT Devices
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

securityscorecard.com | 1

Table of contents

Executive summary 2

Analysis and findings 2

ALPHA command 35

GAME command 36

GRE command 36

ICMP command 36

JAIL command 36

KICK command 36

MIX command 36

PLAIN command 36

QUERY/QUERY2 command 36

SPEC/SPEC2 command 36

STOP/stop/Stop command 36

Indicators of Compromise 37

securityscorecard.com | 2

Executive summary
Gafgyt malware, also known as Bashlite, along with Mirai, have targeted millions of vulnerable IoT
devices in the last few years. The recently compiled sample we’ve analyzed borrowed some code
leaked online from the Mirai botnet. The following commands are implemented: ALPHA, GAME,
GRE, ICMP, JAIL, KICK, MIX, PLAIN, QUERY, SPEC, and STOP. The purpose of these commands is
to perform multiple types of TCP and UDP DoS attacks, to target game servers running Valve’s
Source Engine with DoS attacks, to perform “GRE flood” and ”ICMP flood” attacks, to perform
HTTP DoS attacks on OVH servers. The last command is used to stop the malicious activity.

Analysis and findings
SHA256: 05e278364de2475f93c7db4b286c66ab3b377b092a312aee7048fbe0d3f608aa

The ELF file is packed with UPX, as highlighted in the figure below.

Figure 1

The malware writes the “14I2I34czY$” string to the standard output:

Figure 2

The current process name is set to “/usr/bin/apt” using the prctl function (0xF = PR_SET_NAME):

securityscorecard.com | 3

Figure 3

The process retrieves the current time in seconds, the process ID of the calling process, performs
an XOR operation between the results, and sets the value as the seed for srandom:

Figure 4

The XOR operation result between the current time in seconds and the current process ID is
passed as a parameter to a function called init_rand. The implementation is identical to the one
presented here:

Figure 5

Figure 6

https://github.com/siaoshan33/DDoS-Scripts-1/blob/master/Netbios.c

securityscorecard.com | 4

The malicious process calls a function called getOurIP. It creates a new socket by calling the
socket method (0x2 = AF_UNIX, 0x2 = SOCK_DGRAM):

Figure 7

The inet_addr function is utilized to convert the Google DNS server into binary data in network
byte order:

Figure 8

The malware performs a connection to the Google DNS server on port 53 via a function call to
connect, as highlighted below:

Figure 9

The ELF binary obtains the current address to which the socket is bound using the getsockname
function:

Figure 10

securityscorecard.com | 5

The process opens the kernel routing table from “/proc/net/route”:

Figure 11

The above file is parsed, and the binary is looking for the “00000000” string:

Figure 12

The ELF binary extracts the MAC address of the device using the ioctl method (0x8927 =
SIOCGIFHWADDR):

Figure 13

securityscorecard.com | 6

The fork function is utilized to create a new process by duplicating the calling process. The
malware ignores the SIGCHLD signal:

Figure 14

The binary opens and reads the “/proc” directory using the opendir and readdir functions, as
shown in figure 15.

Figure 15

The process IDs that can be extracted from the subdirectories of the “/proc” folder are converted
from strings to numbers. The malware avoids the current process and its parent process:

Figure 16

securityscorecard.com | 7

A function called killer_mirai_exists is implemented by the malware. The command line of the
processes is extracted from the “/proc/<Process ID>/cmdline” file:

Figure 17

The process uses the isdigit and isalpha functions to verify if a character from the command line
is a digit or an alphabetic character, respectively:

Figure 18

securityscorecard.com | 8

A Mirai process is supposed to contain at least five letters and two digits in its name. If that’s the
case, the process is terminated using the kill function:

Figure 19

The current process is daemonized by calling the setsid and fork methods:

Figure 20

The ELF binary implements a function called initConnection. It will establish a connection with
the C2 server 45.61.186.4 on port 13561 (see figure 21).

Figure 21

securityscorecard.com | 9

A new socket is created, and the process calls a function named connectTimeout:

Figure 22

The malware retrieves the file status flag of the socket and modifies it to include
SOCK_NONBLOCK by calling the fcntl64 method:

Figure 23

securityscorecard.com | 10

In the getHost function, the C2 IP address is converted into binary data in network byte order
using inet_addr:

Figure 24

The connect function is utilized to perform a connection to the C2 server:

Figure 25

The process extracts information about the error status via a call to getsockopt (0x1 =
SOL_SOCKET, 0x4 = SO_ERROR):

Figure 26

securityscorecard.com | 11

The IP address of the device is converted to a string, and the binary will send a packet containing
the string and the architecture that is hard-coded (“x86_64”) to the C2 server:

Figure 27

The confirmation message that contains the device’s IP address and the architecture is sent to
the C2 server using the send method, as shown in the figure below.

Figure 28

The ELF binary flushes the rules of all chains in iptables, stops the iptables and firewalld services,
removes the bash history, and clears the history for the current shell:

securityscorecard.com | 12

Figure 29

Two DNS servers are added to the “/etc/resolv.conf” file:

Figure 30

The malicious process implements a function called recvLine, which uses the recv method to
read the response from the C2 server, as highlighted below:

Figure 31

securityscorecard.com | 13

Figure 32

The strtok function is utilized to split the response into a series of tokens based on the space
delimiter (see figure 33). A function called processCmd implements the received commands:

Figure 33

The following commands are implemented: "ALPHA", "GAME", "GRE", "SPEC2", "SPEC", "JAIL",
"MIX", "ICMP", "QUERY2", "PLAIN", "QUERY", "KICK", "STOP", "stop", and "Stop". An example of such
a command is shown below:

Figure 34

securityscorecard.com | 14

In a function called listFork, the binary creates a child process using the fork method and stores
its PID in a variabile called “pids”:

Figure 35

Now we’ll describe the functions that are used in the main commands: ftcp, vseattack1, rand_hex,
udppac2, udppac, jailv1, icmpattack, rtcp, sendJUNK, tcpFl00d, ovhl7, udpfl00d, and kickv2.

ftcp function

Firstly, the malware expects a port number to be passed as a parameter; otherwise, it generates
one using a function called rand_cmwc:

Figure 36

securityscorecard.com | 15

The function mentioned above implements a Complement Multiply With Carry random number

generator and is used to generate a 4-byte pseudo-random value:

Figure 37

The IP address that is transmitted by the C2 server and is supposed to be affected by a DoS attack
is converted into binary data using inet_addr:

Figure 38

https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator

securityscorecard.com | 16

The malicious binary creates a socket and modifies its type via a function call to setsockopt:

Figure 39

The malware generates a random IP address using a function called getRandomIP, as displayed
in figure 40.

Figure 40

The random IP address is converted from host byte order to network byte order using htonl. In a
function called makeIPPacket, the binary constructs the IP header (20 bytes) that contains the
source IP (= random IP address) and the destination IP that is targeted by the malware:

securityscorecard.com | 17

Figure 41

The ELF binary computes the TCP checksum using the tcpcsum and csum functions that are
defined here. Multiple flood attack types were identified: “all”, “xmas”, “syn”, “rst”, “fin”, “ack”, and
“psh”:

Figure 42

https://github.com/flexingonlamers/Amp/blob/master/tcp-amp.c

securityscorecard.com | 18

Finally, the malware sends multiple packets to the target by calling the sendto method. A new
random IP is generated, it is converted from host byte order to network byte order, and the
algorithm repeats the same steps described above until the target becomes unreachable:

Figure 43

vseattack1 function

The process expects a port number as a parameter or generates one using the rand_cmwc
function. The IP address to be targeted is converted into binary data using inet_addr:

Figure 44

The ELF binary creates a raw socket or a datagram socket, as displayed in the figure below.

Figure 45

securityscorecard.com | 19

A function called makeRandomStr is used to compute a random string:

Figure 46

A function called makevsepacket1 is similar to the function described in the first case; however,
the data sent contains a hard-coded buffer (see figure 48). In this case, the targets are game
servers running Valve’s Source Engine.

Figure 47

securityscorecard.com | 20

Figure 48

The sendto method is used again to send data to the targeted server, as displayed in figure 49.

Figure 49

rand_hex function

The process creates a raw socket (0x2 = AF_INET, 0x3 = SOCK_RAW, 0x6 = IPPROTO_TCP):

Figure 50

In the function called util_local_addr, the binary creates a datagram socket and performs a
connection to the Google DNS server “8.8.8.8” in order to obtain the device’s IP address (see
figure 51).

securityscorecard.com | 21

Figure 51

A network packet that has a similar header to the ones we’ve already covered is created:

Figure 52

The binary implements two checksum functions called checksum_generic and
checksum_tcpudp. Their implemention can be found here.

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/bot/checksum.c

securityscorecard.com | 22

Figure 53

The inet_addr function is used to convert the targeted IP address into binary data in network
byte order. The malware sends hex-generated data to the target via a call to sendto:

Figure 54

udppac/udppac2 function

The ELF binary creates a socket and expects a port number as a parameter or generates one
using the rand_cmwc function:

securityscorecard.com | 23

Figure 55

The target IP address is converted into binary data in network byte order, and the process
generates a random string using a function called rand_str and performs a network connection
to the target via a call to connect:

Figure 56

The randomly generated string is sent to the target IP address by calling the send function
(0x4000 = MSG_NOSIGNAL):

securityscorecard.com | 24

Figure 57

jailv1 function

A datagram socket is created by the malware, and the system time in seconds is retrieved using
the time method (see figure 58).

Figure 58

The gethostbyname function is utilized to obtain a structure of type hostent for an IP
address/domain specified by the C2 server:

Figure 59

securityscorecard.com | 25

The process sends a hard-coded buffer containing hex values to the target IP address, as
highlighted in the figure below.

Figure 60

icmpattack function

The malware forks the process and creates a new socket:

Figure 61

The port number specified by the C2 server is converted from host byte order to network byte
order using htons, and the process calls the inet_addr function with the target IP as a parameter:

securityscorecard.com | 26

Figure 62

In a function called rand, the process uses the random method to generate a pseudo-random
number. The binary performs a network connection to the target by calling the connect method:

Figure 63

Finally, the malware sends multiple ICMP echo requests to the target server:

Figure 64

securityscorecard.com | 27

rtcp function

The binary calls the getHost function with the target IP as a parameter and then creates a raw
socket:

Figure 65

A random IP is generated and is included as the source IP in a network packet constructed using
the makeIPPacket function, as displayed in figure 66:

Figure 66

The ELF binary computes the TCP checksum using the tcpcsum and csum functions:

securityscorecard.com | 28

Figure 67

The sendto function is used to send the network packets to the target server:

Figure 68

sendJUNK function

The malicious process extracts the file descriptor table size using getdtablesize and converts the
target IP address using inet_addr:

Figure 69

securityscorecard.com | 29

The malware sends 170 bytes to the target server using the send function:

Figure 70

In another branch of the function, a new stream socket is created, its file status flag is modified,
and the binary connects to the target IP address (see figure 71).

Figure 71

tcpFl00d function

The malicious binary calls the getHost function and creates a raw socket:

securityscorecard.com | 30

Figure 72

A new random IP is generated, and the function called makeIPPacket is utilized to create a
network packet that will be sent to the target server. Multiple flood attack types were identified:
“all”, "syn", "rst", "fin", "ack", and "psh":

Figure 73

The TCP checksum is computed, and the process sends multiple requests until the target
becomes unreachable using the sendto method:

securityscorecard.com | 31

Figure 74

ovhl7 function

The binary randomly selects a user agent from a list and calls the fork function, as shown below.

Figure 75

securityscorecard.com | 32

Figure 76

Using the sprintf function, the malware constructs a PGET request with the “\x00\x01...\xff” URI. A
function called socket_connect is implemented, and the request is sent to the target server using
the write method:

Figure 77

In the socket_connect function, the process calls the gethostbyname method, creates a stream
socket, modifies the TCP_NODELAY option, and connects to the target IP address:

securityscorecard.com | 33

Figure 78

Figure 79

udpfl00d function

A datagram socket or a raw socket is created, depending on the C2 response (see figure 80).

Figure 80

securityscorecard.com | 34

As in the tcpFl00d function, the malicious process calls the findRandIP, makeIPPacket, and
makeRandomStr functions. The network packets containing random data are sent to the target
server using sendto:

Figure 81

Figure 82

kickv2 function

The ELF binary creates a datagram socket and calls the gethostbyname function:

Figure 83

securityscorecard.com | 35

It randomly selects a buffer from the “Trandstrings” array that is sent to a target mentioned by
the C2 server:

Figure 84

Figure 85

Now we’ll describe all commands implemented by Gafgyt that call the functions we already
described. It’s important to mention that the 1st parameter of any command is supposed to be
an IP address and the 2nd parameter is a port number.

ALPHA command
This command calls the ftcp function that performs multiple types of TCP DoS attacks.

securityscorecard.com | 36

GAME command
This command targets the game servers running Valve’s Source Engine with DoS attacks. It calls
the vseattack1 function.

GRE command
This command targets a server with “GRE flood” attacks. It calls the rand_hex function.

ICMP command
This command targets a server with “ICMP flood” attacks. It calls the icmpattack function.

JAIL command
This command calls the jailv1 function that performs DoS attacks.

KICK command
This command calls the kickv2 function that sends multiple hard-coded buffers to a target.

MIX command
This command targets a server with “GRE flood” and “ICMP flood” attacks. It calls the rand_hex
and icmpattack functions.

PLAIN command
This command calls the udpfl00d function that targets a server with UDP DoS attacks.

QUERY/QUERY2 command
This command targets a server with multiple types of TCP DoS attacks and performs HTTP DoS
attacks on OVH servers. It calls the rtcp, sendJUNK, tcpFl00d, and ovhl7 functions.

SPEC/SPEC2 command
This command calls the udppac/udppac2 function that performs DoS attacks.

STOP/stop/Stop command
This command is used to kill all spawned processes using the kill command.

securityscorecard.com | 37

Indicators of Compromise
C2 server

45.61.186.4:13561

SHA256

05e278364de2475f93c7db4b286c66ab3b377b092a312aee7048fbe0d3f608aa

User-Agents used by Gafgyt

Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/4.0; GTB7.4; InfoPath.2; SV1;.NET CLR
4.4.58799; WOW64; en-US)

Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; FunWebProducts)

Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:25.0) Gecko/20100101 Firefox/25.0

Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:21.0) Gecko/20100101 Firefox/21.0

Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:24.0) Gecko/20100101 Firefox/24.0

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10; rv:33.0) Gecko/20100101 Firefox/33.0

Mozilla/5.0 (compatible; Konqueror/3.0; i686 Linux; 20021117)

Mozilla/5.0 (Windows NT 6.1; WOW64) SkypeUriPreview Preview/0.5

