
A Deep Dive Into a PoshC2
Implant
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents
Table of contents 1

Executive summary 2

Analysis and findings 2

exit command 10

loadmodule command 10

run-dll-background and run-exe-background commands 11

run-dll and run-exe commands 13

beacon command 13

Indicators of Compromise 15

securityscorecard.com | 1



Executive summary
PoshC2 is an open-source C2 framework used by penetration testers and threat actors. It can
generate a Powershell-based implant, a C#.NET implant that we analyze in this paper, and a
Python3 implant. The malware retrieves the current Windows user, the network domain name
associated with the current user, the computer name, the processor architecture, the current
process name and id, and the path of the Windows directory. The network communication is
encrypted using the AES algorithm with a hard-coded key that can be changed by the C2
server. The C# implant can load and execute modules in memory without touching the disk by
using multiple commands. It can perform post-exploitation activities by loading tools such as
SharpHound, Rubeus, SharpView, and Seatbelt.

Analysis and findings
SHA256: 68a2c4cce8c8e8cdf819d8b4f8ab88c0c851fb4ca0dcc07d562a6befc4172380

The malware hides the current window by calling the ShowWindow API (0x0 = SW_HIDE). It also
disables the certificate validation for all outgoing HTTPS requests (see figure 2).

Figure 1

Figure 2

The process creates an event for thread synchronization. A new thread will be created, and the
current one killed after its execution finishes via a function call to TerminateThread (figure 3).

securityscorecard.com | 2

https://github.com/nettitude/PoshC2/
https://github.com/BloodHoundAD/SharpHound
https://github.com/GhostPack/Rubeus
https://github.com/tevora-threat/SharpView
https://github.com/GhostPack/Seatbelt


Figure 3

The binary retrieves the following information: the current Windows user, the network domain
name associated with the current user, the computer name, the processor architecture, the
current process name and id, and the path of the Windows directory.

Figure 4

securityscorecard.com | 3



The IsInRole method is utilized to verify whether the current user belongs to the Administrators
group, as shown below:

Figure 5

The malware embedded the C2 server “95.213.145[.]101” in clear text:

Figure 6

The malicious process constructs a custom URL and calls the Encryption function, which will
encrypt the stolen information using a hard-coded key:

Figure 7

The stolen information is encrypted using the AES256 algorithm with a random IV generated by
calling the GenerateIV function. The encrypted data is concatenated with the IV and is
Base64-encoded:

securityscorecard.com | 4



Figure 8

Figure 9

securityscorecard.com | 5



The Base64-encoded data is stored in the Cookie HTTP request header, and no proxy is used
during the communication.

DownloadString is used to exfiltrate the stolen data to the C2 server:

Figure 10

The server response is Base64-decoded, and the first 16 bytes represent the IV. The remaining
bytes are decrypted using the AES algorithm by calling the TransformFinalBlock method:

Figure 11

securityscorecard.com | 6



The decrypted data must satisfy multiple regular expressions such as
“RANDOMURI19901(.*)10991IRUMODNAR”.

The extracted elements contain a list of URIs and URLs that will be used in all C2
communications, the date that the implant will stop beaconing, the default sleep period for
implants, the beacon jitter value, a new AES key, and some static images that will be used to
hide the task output:

Figure 12

The primary function called “ImplantCore” initializes an UrlGen object and an ImgGen object
with values transmitted by the C2 server:

Figure 13

Figure 14

securityscorecard.com | 7



Figure 15

The sleep parameter can be expressed in seconds, minutes, or hours. The Parse_Beacon_time
function is used to convert the sleep time to seconds:

Figure 16

Figure 17

securityscorecard.com | 8



Depending on if the kill date sent by the C2 server is earlier than the present date, the malware
kills itself:

Figure 18

The sample constructs a new URL based on the same C2 server that contains the random URIs
and the GUID. It performs a GET request to the C2 server in order to receive commands to be
executed:

Figure 19

Figure 20

securityscorecard.com | 9



The C2 server response is decrypted using the AES algorithm, and the resulting string is
expected to start with “multicmd”. The commands transmitted by the server are separated by
the “!d-3dion@LD!-d” string, and the first five characters represent the task ID, as shown in
figure 21.

Figure 21

The following commands are implemented: “exit”, “loadmodule”, “run-dll-background”,
“run-exe-background”, “run-dll”, “run-exe”, and “beacon”.

exit command
In this case, the thread finishes its execution and sets the state of the event to signaled:

Figure 22

loadmodule command
The Assembly.Load method is utilized to load an assembly that is Base64-decoded:

Figure 23

The task output is Gzip compressed and then encrypted using the AES algorithm. The
encrypted data is combined with one of the static images that were transferred by the C2

securityscorecard.com | 10



server and padded to obtain an image of 1,500 bytes. Finally, the information is sent to the C2
server via a function call to UploadData:

Figure 24

Figure 25

run-dll-background and run-exe-background commands
The malware creates a new thread that executes the rAsm function, as shown below:

Figure 26

securityscorecard.com | 11



The command contains multiple elements separated by a space: the namespace of the class
containing the Main function, the name of the class containing the Main function, the entry
point method when running DLLs, and the command line arguments (figure 27).

Figure 27

CommandLineToArgvW is used to parse the command line string and returns an array of
pointers to the cmdline arguments:

Figure 28

The malicious binary executes a specific function for DLLs using InvokeMember and the entry
point for executables:

securityscorecard.com | 12



Figure 29

run-dll and run-exe commands
The execution flow is the same as for the above commands. However, no thread is created. The
PoshC2 documentation highlights that, in this case, it runs the command in the foreground.

Figure 30

beacon command
The Parse_Beacon_time function is used again to convert the beacon time to seconds:

Figure 31

If any other command is transmitted, the process executes the “run-exe” command with the
specified command line arguments:

securityscorecard.com | 13

https://poshc2.readthedocs.io/en/latest/usage/loadingmodules.html


Figure 32

The final POST request sent to the C2 server is based on a task ID set to “99999” (Figure 33).

Figure 33

securityscorecard.com | 14



Indicators of Compromise

SHA256

68a2c4cce8c8e8cdf819d8b4f8ab88c0c851fb4ca0dcc07d562a6befc4172380

C2 server

95.213.145.101

securityscorecard.com | 15


