
How to Analyze JavaScript
Malware – A Case Study of
Vjw0rm
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents

Executive summary 2

Analysis and findings 2

Commands 9

Indicators of Compromise 13

securityscorecard.com | 1



Executive summary
Vjw0rm is a worm that spreads via USB drives and has RAT capabilities because it implements
different commands transmitted by the C2 server. It establishes persistence on a machine by
copying to the Startup folder and creating a Run registry entry. The malware drops a Java-based
RAT called STRRAT, executed using the Java executable that can be found on the local computer
or downloaded from a remote URL.

Analysis and findings
SHA256: 2b0c9059feece8475c71fbbde6cf4963132c274cf7ddebafbf2b0a59523c532e

JavaScript malware can be an infection vector leading to serious threats such as ransomware
and spyware. We want to present a general approach that can be used to analyze any malicious
JavaScript scripts.

As we can see in figure 1, the initial script is obfuscated, and we need to find a way to extract the
relevant information:

Figure 1

We used js-beautify to beautify the JavaScript file. We identified a string that seems to be
Base64-encoded (see figure 2).

securityscorecard.com | 2

https://github.com/beautify-web/js-beautify


Figure 2

The malware replaces the “_!” characters with “m” in the above string:

Figure 3

Box-js is a tool that can be used to execute and analyze a JavaScript file. Figure 4 shows that the
malware creates a script called “KeunXSGcHu.js” in the “%AppData%” directory and runs it:

Figure 4

The transformed string is Base64-decoded, and then the script executes the new instructions.

securityscorecard.com | 3

https://github.com/CapacitorSet/box-js


As we’ve already seen, the malware creates a file called “KeunXSGcHu.js”, which is populated
with a variable that is Base64-decoded, as highlighted below:

Figure 5

Figure 6

Another variable named “longText” is decoded by replacing the “_!” characters with “A” (see
figure 7).

Figure 7

The script generates a random string consisting of a maximum of 10 characters using the
“Math.random()” function. The “longText” variable is Base64-decoded, and its content is saved in
a “.txt” file. The resulting file is a malicious JAR called STRRAT with the following hash:
0de7b7c82d71f980e5261c40188bafc6d95c484a2bf7007828e93f16d9ae1d9a.

Figure 8

The malware tries to locate the Java executable on the machine by querying the following

securityscorecard.com | 4



registry keys:

Figure 9

Whether Java is found on the computer, the malicious JAR file is executed; otherwise, the
“GrabJreFromNet” function is called:

Figure 10

The function mentioned above downloads an archive called “jre.zip” from
“https[:]//aash[.]com.pk/jre.zip”. The archive content is extracted and saved in a folder called
“jre7” in the “%AppData%” directory. A registry Run entry called “ntfsmgr” is used as a
persistence mechanism to run the malicious JAR:

Figure 11

The implementation of the “UnZip” function is shown in figure 12:

securityscorecard.com | 5



Figure 12

In the “KeunXSGcHu.js” file, it is implemented a function similar to the one from the initial
script:

Figure 13

Figure 14

Finally, after decoding the Base64-encoded string, we can identify the malware as vjw0rm (see
figure 15).

Figure 15

The script verifies if the “HKCU\vjw0rm” registry key exists on the system, which would indicate
a previous infection. If that’s not the case, the value is created and populated with “TRUE” or
“FALSE”:

securityscorecard.com | 6



Figure 16

The malicious script is copied to the Startup folder using the CopyFile function, as shown below:

Figure 17

The malware performs a POST request to the C2 server “http[:]//javaautorun.duia[.]ro:5465/Vre”
with a custom User-Agent:

Figure 18

The user-agent contains the following information: computer name, username, serial number
of all logical disks, operating system version, and antivirus software name (see figure 19).

securityscorecard.com | 7



Figure 19

The worm implements the following commands:

Figure 20

securityscorecard.com | 8



Commands
Cl command

The command is used to terminate the script execution.

Sc command

The process creates a temporary file, populates it with code sent by the C2 server, and executes
it using the run function.

Ex command

The command is used to execute JavaScript code transmitted by the C2 server.

Rn command

The malware modifies the current script and executes the new file using wscript.exe.

Up command

The malicious process creates a temporary file that is filled in with code and executed via
Wscript.

Un command

The command runs additional JavaScript code that might be used to uninstall the worm.

RF command

Same execution flow as the Sc command.

We used Recaf to analyze the malicious JAR file. As shown in figure 21, the initial code appears
to be obfuscated.

securityscorecard.com | 9

https://github.com/Col-E/Recaf


Figure 21

We have used Java deobfuscator to detect any obfuscators. Figure 22 reveals that the Allatori
Java obfuscator has been identified:

Figure 22

After deobfuscating the file, we can spot many differences (figure 23). For example, a scheduled
task called “Skype” is created by the RAT.

securityscorecard.com | 10

https://github.com/java-deobfuscator/deobfuscator


Figure 23

We have decrypted the STRRAT configuration using this script:

Figure 24

We can highlight two C2 servers nneewwllooggzz.mefound[.]com and
windowsupdatelogz.onedumb[.]com, and the http[:]//jbfrost[.]live URL that hosts the STRRAT
plugins.

STRRAT provides functionalities such as keylogging, uninstalling the application, updating the
malware, downloading and executing files using cmd or Powershell, and so on:

securityscorecard.com | 11

https://github.com/JPMinty/Misc-Tools/blob/main/Malware-Analysis/decrypt-strrat.py


Figure 25

securityscorecard.com | 12



Indicators of Compromise

SHA256

2b0c9059feece8475c71fbbde6cf4963132c274cf7ddebafbf2b0a59523c532e

0de7b7c82d71f980e5261c40188bafc6d95c484a2bf7007828e93f16d9ae1d9a

Files created

%AppData%\KeunXSGcHu.js

%AppData%\<random name>.txt

%AppData%\ jre.zip

%AppData%\ jre7

Registry keys

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ntfsmgr

HKCU\vjw0rm

C2 servers/URLs

https[:]//aash[.]com.pk/jre.zip

http[:]//javaautorun.duia[.]ro:5465

http[:]//jbfrost[.]live

nneewwllooggzz.mefound[.]com

windowsupdatelogz.onedumb[.]com

securityscorecard.com | 13


