
How to Analyze Java
Malware – A Case Study of
STRRAT
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents
Table of contents 1
Executive summary 2
Analysis and findings 2
STRRAT commands 8
Indicators of Compromise 42

securityscorecard.com | 1



Executive summary
STRRAT is a Java-based malware that executes multiple commands transmitted by the C2
server. The JAR file was obfuscated using the Allatori obfuscator. It establishes persistence on
the host by copying to the Startup folder and creating a scheduled task and a Run registry entry.
The functionalities of the implemented commands include: reboot the machine, uninstall the
malware and delete all its traces, download and execute files, update the initial JAR file, execute
commands using cmd and powershell, open/delete/download/upload files specified by the C2
server, perform keylogger activities, retrieve a list of running processes, implement a reverse
proxy on the machine, install RDPWrap that enables Remote Desktop Host support, steal
passwords from multiple browsers and email clients, attempt to elevate privileges, and
implement a functional ransomware module.

Analysis and findings
SHA256: 0de7b7c82d71f980e5261c40188bafc6d95c484a2bf7007828e93f16d9ae1d9a

We will perform a detailed analysis of the STRRAT malware that was dropped by Vjw0rm. As
we’ve already described in the Vjw0rm whitepaper, the JAR file is deobfuscated using the Java
deobfuscator.

As shown in Figure 1, the malware was obfuscated using the Allatori Obfuscator:

Figure 1

The process verifies whether any arguments were passed and sets a boolean value accordingly:

Figure 2

If a single argument is provided, the RAT creates a file called "C:\Users\<User>\64578lock.file", as
highlighted below:

securityscorecard.com | 2

https://resources.securityscorecard.com/research/acasestudyofVjw0rm
https://github.com/java-deobfuscator/deobfuscator
https://github.com/java-deobfuscator/deobfuscator


Figure 3

Figure 4

The configuration file called “config.txt” is decrypted using the AES algorithm, with the key
derived from the “strigoi” string:

Figure 5

securityscorecard.com | 3



Figure 6

Multiple JAR files that will be used in the malicious activity are downloaded and saved to the
“C:\Users\<User>\lib” directory:

Figure 7

Figure 8

The getAbsolutePath method is utilized to retrieve the path of the JAR file. It displays an error
message if NULL is returned:

Figure 9

Figure 10

The first decrypted parameter from the configuration represents the primary C2 server, and the
second is the primary C2 port. The fourth and fifth parameters contain the secondary C2 server
and port:

securityscorecard.com | 4



Figure 11

Figure 12

The malware establishes persistence by creating a scheduled task called “Skype”:

Figure 13

The malicious process obtains the path of the AppData folder using SHGetFolderPath (26 =
CSIDL_APPDATA). It creates a directory called “strlogs” inside AppData using the mkdir
function:

securityscorecard.com | 5



Figure 14

Figure 15

Figure 16

The RAT creates a socket and connects it to the C2 server on the primary port. If the connection
is unsuccessful, it tries contacting the backup C2 server (see Figure 17).

Figure 17

securityscorecard.com | 6



The process copies the JAR file to the Startup folder (7 = CSIDL_STARTUP):

Figure 18

Figure 19

The malicious process creates a new entry under the
“Software\Microsoft\Windows\CurrentVersion\Run” registry key that will allow the “javaw.exe”
executable to run the initial JAR file. This is accomplished using the WindowsRegOpenKey,
WindowsRegQueryValueEx, and WindowsRegSetValueEx functions:

Figure 20

securityscorecard.com | 7



Figure 21

Figure 22

The C2 server transmits multiple elements that are delimited by “|”. The first one is the
command that will be executed by STRRAT:

Figure 23

STRRAT commands
reboot command

The impacted machine is rebooted using the shutdown command (see Figure 23).

shutdown command

The malicious process stops the current host, as shown below:

Figure 24

uninstall command

This command implements the uninstall routine. The scheduled task called “Skype” is deleted,
the JAR file that was copied to the Startup folder is deleted along with the initial JAR, and the
Registry value used for persistence is deleted using WindowsRegDeleteValue:

securityscorecard.com | 8



Figure 25

Figure 26

disconnect command

The process closes the socket created before and then exits:

Figure 27

down-n-exec command

The malware downloads a file found in a URL supplied by the C2 server and saves it in the
AppData directory:

Figure 28

Figure 29

securityscorecard.com | 9



Depending on the downloaded file’s extension, it can be executed using wscript.exe, java.exe,
and cmd.exe:

Figure 30

The malicious process sends an update message to the C2 server (“update-status|Executed
File”) and another one indicating that it’s ready to receive new commands:

Figure 31

Figure 32

update command

This command is used to update the JAR file. It launches the new JAR using the Java
executable:

Figure 33

securityscorecard.com | 10



Figure 34

up-n-exec command

This command is similar to the down-n-exec command presented above. It downloads a file
executed using wscript.exe, java.exe, or cmd.exe:

Figure 35

remote-cmd command

The RAT executes a command transmitted by the C2 server using cmd.exe. It retrieves the
content of the “COMPUTERNAME” (or “HOSTNAME”) and “USERNAME” environment variables
that will be exfiltrated:

Figure 36

securityscorecard.com | 11



Figure 37

Figure 38

A new socket that transmits the information to the C2 server is created:

Figure 39

Figure 40

securityscorecard.com | 12



power-shell command

The command is similar to the one described above. However, the sent command is run via
powershell.exe (see Figure 41).

Figure 41

file-manager command

The malware enumerates the files and directories located in the User’s home directory. It
constructs a string that contains the following data:

● “F” + filename + file size in KB + lastModified timestamp
● “D” + directory name + lastModified timestamp

Figure 42

Figure 43

A new thread is created, which deals with the following subcommands: “navigate”,
“nav-key-log”, “open”, “delete”, “savefile”, and “bringfile”.

Figure 44

securityscorecard.com | 13



Figure 45

The “navigate” subcommand is utilized to enumerate the files found in a particular folder, as
highlighted in Figure 46.

Figure 46

The “nav-key-log” subcommand enumerates the keylogger directory found in
“AppData\strlogs”. The “open” subcommand is used to run a file using “cmd.exe /c”.

Using the “delete” subcommand, the malware deletes a regular file/folder (figure 47).

securityscorecard.com | 14



Figure 47

The “savefile” subcommand is utilized to create a new file and populate it with content sent by
the C2 server:

Figure 48

Finally, the last subcommand is used to exfiltrate a regular file to the remote server:

securityscorecard.com | 15



Figure 49

keylogger command

The malicious process creates an HTML file that contains a string corresponding to this malware
family, “Generated by Strigoi Master”:

Figure 50

Figure 51

securityscorecard.com | 16



Figure 52

The RAT constructs a globalKeyboardHook and implements the addKeyListener function,
which listens to keyPressed and keyReleased events:

Figure 53

It verifies which keys were pressed. Then it calls the getVirtualKeyCode function, as shown in
figure 54.

securityscorecard.com | 17



Figure 54

The window name on which the keys were pressed is also recorded using the
GetForegroundWindow and GetWindowText methods:

Figure 55

securityscorecard.com | 18



Figure 56

o-keylogger command

The malware creates an HTML file named: “keylogs_” + random int between 0 and 9998 +
“.html”. This file stores the pressed keys during the keylogger operation:

Figure 57

processes command

The RAT retrieves a list of running processes via a WMI query, which will be exfiltrated to the C2
server. It can kill a specific process based on its PID using the taskkill command:

Figure 58

Figure 59

securityscorecard.com | 19



Figure 60

h-browser command

The malicious process checks if the Chrome and Firefox browsers are installed on the machine
in the “C:\Program Files” and “C:\Program Files (x86)” directories, as shown below:

Figure 61

Figure 62

The following subcommands are implemented: “start”, “stop”, and “exit” (see Figure 63).

securityscorecard.com | 20



Figure 63

The process opens Chrome or Firefox in a new window with the “Strigoi Browser” title.

Figure 64

securityscorecard.com | 21



The following events are implemented: “mouse-event left”, “mouse-event right”, and
“key-event”. These events are used to navigate in the newly created browser window. For
example, in the case of mouse events, the malware calls the PostMessage function with the
parameters 513 (WM_LBUTTONDOWN), 514 (WM_LBUTTONUP), and 516
(WM_RBUTTONDOWN), 517 (WM_RBUTTONUP), respectively:

Figure 65

startup-list command

The malware extracts the Startup programs and the programs found in the Run registry keys:

Figure 66

securityscorecard.com | 22



Figure 67

The following subcommands are implemented: “reload”, “delete”, and “add”. The process can
delete and add programs in the Startup folder, as well as entries under the Run registry keys
(see Figure 68).

Figure 68

remote-screen command

securityscorecard.com | 23



The RAT creates two threads that implement the remote screen function:

Figure 69

Figure 70

The following events are handled: "key-event", "mouse-move", "mouse-wheel", "mouse-double",
"mouse-left", and "mouse-right". The malware can manipulate the Mouse cursor using the
mouseMove, mouseWheel, mousePress, and mouseRelease functions:

Figure 71

securityscorecard.com | 24



Figure 72

rev-proxy command

This command implements a reverse proxy on the host. It receives a “CONNECT IP:Port” request
and sends back a “200 Connection Established” message, as highlighted below:

Figure 73

Figure 74

securityscorecard.com | 25



Figure 75

hrdp-new command

Firstly, the process verifies whether the Chrome and Firefox browsers are installed on the
machine:

Figure 76

Figure 77

It downloads RDPWrap from http[:]//wshsoft[.]company/multrdp.jpg, which enables Remote

securityscorecard.com | 26



Desktop Host support on Windows:

Figure 78

Figure 79

The process runs RDPWrap, creates a new user consisting of five letters, and prevents the
display of the last username by modifying a Registry value. The new username is sent to the C2
server:

Figure 80

securityscorecard.com | 27



Figure 81

Figure 82

The following subcommands are implemented: "CLONE", "EXITS", and "EXIT".

securityscorecard.com | 28



Figure 83

Using the “CLONE” subcommand, the malicious process retrieves a Firefox profile and clones it
using a batch file called “Firefox.bat”. It starts Firefox with the “-no-remote -profile” parameters,
which specifies the cloned user’s Profile:

Figure 84

By specifying the “EXITS” subcommand, the newly created account is deleted. The modified

securityscorecard.com | 29



Registry value is set back to 0:

Figure 85

Finally, the last subcommand is utilized to log off the RDP session that was established, as
displayed below:

Figure 86

hrdp-res command

The command is similar to the one described above; however, the username is specified by the
C2 server:

Figure 87

securityscorecard.com | 30



chrome-pass command

The RAT only targets the Windows operating system, as shown below:

Figure 88

Figure 89

The “Login Data” database is copied to “AppData\Roaming\Login Data”, and the malware
extracts the following fields: “action_url”, “username_value”, and “password_value” (see Figure
90).

Figure 90

Firstly, the malware tries to decrypt the “password_value” field using the cryptUnprotectData
function. If the operation is unsuccessful, it retrieves and decrypts the master key from the

securityscorecard.com | 31



“Local State” file, and the “password_value” field is decrypted using the AES-GCM algorithm:

Figure 91

Figure 92

Figure 93

securityscorecard.com | 32



foxmail-pass command

The process opens the Registry key corresponding to the FoxMail Email client, and also the file
found in “Storage/<Email>/Accounts/Account.rec0”. It looks for two fields called “Password” and
“POP3Password”:

Figure 94

Figure 95

The passwords are decoded using a custom algorithm (see Figure 96).

securityscorecard.com | 33

https://github.com/StarZHF/Foxmail-Password-Recovery/blob/master/foxDecode/foxDecode/Program.cs


Figure 96

outlook-pass command

The malicious process performs searches through Registry keys corresponding to Outlook. It
tries to locate entries that contain the “password” string and specific passwords: “IMAP
Password”, “POP3 Password”, “HTTP Password”, and “SMTP Password”. It obtains the “Email” and
“SMTP Server” values and decrypts the passwords using the cryptUnprotectData method:

Figure 97

securityscorecard.com | 34



Figure 98

Figure 99

fox-pass command

The process locates the following files and archives them in an archive to be exfiltrated called
“rpack.zip”: logins.json (encrypted logins), key4.db (decryption key for passwords), and cert9.db
(certificates stored in the Certificate Manager).

securityscorecard.com | 35



Figure 100

Figure 101

Figure 102

tb-pass command

This command is similar to the one presented above, but Thunderbird passwords are extracted:

securityscorecard.com | 36



Figure 103

ie-pass command

The malware extracts stored credentials from Internet Explorer and Edge using a Powershell
script (see Figure 105).

Figure 104

Figure 105

chk-priv command

The RAT verifies whether it has administrative privileges by trying to create a file called
“dummy.log” in the System32 directory and sends the outcome to the C2 server:

securityscorecard.com | 37



Figure 106

Figure 107

req-priv command

The process tries to launch itself with admin privileges by sending a UAC prompt to the user
using the “-verb runAs” Powershell parameters:

Figure 108

Figure 109

securityscorecard.com | 38



rw-encrypt command

This command implements the ransomware module of the malware. It encrypts the files found
in the Downloads, Documents, and Desktop folders located in the user’s profile using AES128.
The AES key is derived based on a password specified by the C2 server, and the IV is randomly
generated using a SecureRandom object. Finally, the extension of the encrypted files is
changed to “.crimson”, as highlighted below:

Figure 110

Figure 111

Figure 112

Figure 113

securityscorecard.com | 39



rw-decrypt command

The command is the complement of the above and can be utilized to decrypt the files having
the “.crimson” extension using the AES128 algorithm.

Figure 114

show-msg command

The malware creates the ransom note called “crimson_info.txt” and populates it with content
received from the C2 server. It is displayed to the user by spawning a notepad process:

Figure 115

screen-on command

This command is used to move the Mouse using the mouseMove function, keeping the screen
on:

Figure 116

Figure 117

securityscorecard.com | 40



save-all-pass command

The command combines the passwords extracted from Internet Explorer, Edge, Google
Chrome, FoxMail, Outlook, Mozilla Firefox, and Thunderbird:

Figure 118

The process sends a ping packet to the C2 server containing the STRRAT version 1.5 and the
public IP of the host retrieved from ip-api.com:

Figure 119

Figure 120

securityscorecard.com | 41



Indicators of Compromise

SHA256

0de7b7c82d71f980e5261c40188bafc6d95c484a2bf7007828e93f16d9ae1d9a

C2 servers/URLs

http[:]//jbfrost[.]live

nneewwllooggzz.mefound[.]com

windowsupdatelogz.onedumb[.]com

http[:]//wshsoft[.]company/multrdp.jpg

ip-api[.]com/json/

User agent

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/73.0.3683.86 Safari/537.36

Files created

C:\Users\<User>\64578lock.file

C:\Users\<User>\AppData\Roaming\Mozilla\Firefox\rpack.zip

C:\Users\<User>\AppData\strlogs

C:\Users\<User>\lib\ jna-5.5.0.jar

C:\Users\<User>\lib\ jna-platform-5.5.0.jar

C:\Users\<User>\lib\sqlite-jdbc-3.14.2.1.jar

C:\Users\<User>\lib\system-hook-3.5.jar

Registry key

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\<JAR Name>

Scheduled task

Skype

securityscorecard.com | 42


