
A Technical Analysis of
Royal Ransomware
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707

Table of contents

Executive summary 2

Analysis and findings 2

Thread activity – StartAddress function 7

Thread activity – sub_7FF668CDF870 function 8

Case 1 – File size < 5244992 bytes (approximately 5MB) 12

Case 2 – File size > 5244992 bytes (approximately 5MB) 13

Case 3 – Modify the encryption percentage using the “-ep” parameter 14

Indicators of Compromise 16

securityscorecard.com | 1

Executive summary
Royal ransomware is a recent threat that appeared in 2022 and was particularly active during
recent months. The ransomware deletes all Volume Shadow Copies and avoids specific file
extensions and folders. It encrypts the network shares found in the local network as well as the
local drives. A parameter called “-id” that identifies the victim and is also written in the ransom
note must be specified in the command line.

The files are encrypted using the AES algorithm (OpenSSL), with the key and IV being encrypted
using the RSA public key that is hard-coded in the executable. The malware can fully or partially
encrypt a file based on the file’s size and the “-ep” parameter. The extension of the encrypted
files is changed to “.royal”.

Analysis and findings
SHA256: f484f919ba6e36ff33e4fb391b8859a94d89c172a465964f99d6113b55ced429

The malware is a 64-bit executable that is not packed. It retrieves the command-line string for
the process using the GetCommandLineW API:

Figure 1

CommandLineToArgvW is utilized to obtain an array of pointers to the command line
arguments, as highlighted below:

Figure 2

The process compares the arguments with "-path", "-id", and "-ep". The “-id” parameter is
mandatory and consists of 32 characters that could be a victim ID. In this case, any 32 characters
value can be specified (see figure 3).

Figure 3

The ransomware deletes all Volume Shadow Copies by spawning a vssadmin.exe process:

securityscorecard.com | 2

Figure 4

The malware decrypts a list of extensions that will be skipped:

● .exe
● .dll
● .bat
● .lnk
● .royal

A list of directories to be skipped is also decrypted:

● windows
● royal
● $recycle.bin
● google
● perflogs
● mozilla
● tor browser
● boot
● $windows.~ws
● $windows.~bt
● windows.old

The executable initiates the use of the Winsock DLL via a function call to WSAStartup:

Figure 5

A new socket is created using the socket API (0x2 = AF_INET, 0x1 = SOCK_STREAM):

Figure 6

securityscorecard.com | 3

The binary obtains a pointer to an extension function using the WSAIoctl routine (0xC8000006 =
SIO_GET_EXTENSION_FUNCTION_POINTER):

Figure 7

The GetNativeSystemInfo API is used to extract information about the current system:

Figure 8

The malicious process creates multiple threads depending on the number of available
processors responsible for files’ encryption:

Figure 9

A single thread that executes the StartAddress function takes care of the files’ enumeration:

Figure 10

The GetIpAddrTable function retrieves the interface-to-IPv4 address mapping table (see figure
11).

Figure 11

The IP addresses extracted from the above table are converted from network order to host byte
order, as displayed in figure 12.

securityscorecard.com | 4

Figure 12

Royal ransomware creates an input/output (I/O) completion port that is not yet associated with
a file handle using CreateIoCompletionPort:

Figure 13

The WSASocketW routine is used to create a socket that is bound to the TCP protocol (0x2 =
AF_INET, 0x1 = SOCK_STREAM, 0x6 = IPPROTO_TCP):

Figure 14

The process associates the local address with the above socket, as shown in figure 15.

Figure 15

The I/O completion port that was already created is associated with the TCP socket via a
function call to CreateIoCompletionPort:

Figure 16

The malware tries to iteratively connect to other hosts in the same network on port 445:

securityscorecard.com | 5

Figure 17

Figure 18

The malicious executable dequeues an I/O completion packet from the I/O completion port by
calling the GetQueuedCompletionStatus API:

Figure 19

The WSAAddressToStringW routine is utilized to extract the reachable IP addresses from the
sockaddr structures:

Figure 20

The ransomware enumerates the network shares that are different than "ADMIN$" and "IPC$":

securityscorecard.com | 6

Figure 21

Thread activity – StartAddress function
GetLogicalDrives is used to obtain the currently available disk drives (see figure 22).

Figure 22

A ransom note called “README.txt” is created in every drive (0x40000000 = GENERIC_WRITE):

Figure 23

The ransom note containing the “-id” parameter is populated using the WriteFile routine:

Figure 24

The ransomware starts enumerating the files using the FindFirstFileW function:

Figure 25

securityscorecard.com | 7

It compares the directories name with the list of excluded folders using StrStrIW:

Figure 26

The files enumeration continues by calling the FindNextFileW API:

Figure 27

Thread activity – sub_7FF668CDF870 function
The malware imports a hard-coded RSA public key:

Figure 28

The OpenSSL library will be used to encrypt the files using the AES algorithm, with the AES key
being encrypted using the RSA public key:

securityscorecard.com | 8

https://github.com/openssl/openssl

Figure 29

How the ransomware encrypts a file. The CreateFileW API is used to open a targeted file
(0x10000000 = GENERIC_ALL):

Figure 30

The malicious binary retrieves the size of the file using GetFileSizeEx:

Figure 31

It moves the file pointer to the beginning of the file by calling the SetFilePointerEx routine (0x0
= FILE_BEGIN):

Figure 32

The process generates a random 32-byte AES key and a 16-byte IV using the BCryptGenRandom
function (0x2 = BCRYPT_USE_SYSTEM_PREFERRED_RNG):

securityscorecard.com | 9

Figure 33

Figure 34

Firstly, the file content is read via a call to ReadFile:

Figure 35

The content is encrypted using the AES256 algorithm 16 bytes at a time (see figure 36). The
algorithm implementation can be found here (figure 37).

Figure 36

securityscorecard.com | 10

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

Figure 37

The encrypted content is written back to the file, followed by the AES key and IV that were
encrypted using the RSA public key:

Figure 38

Figure 39

Finally, the ransomware writes the file length and a value representing the encryption

securityscorecard.com | 11

percentage to the file (0x64 = 100%, i.e. the entire file was encrypted):

Figure 40

Figure 41

The file’s extension is changed to “.royal” using MoveFileExW (0x8 =
MOVEFILE_WRITE_THROUGH):

Figure 42

Case 1 – File size < 5244992 bytes (approximately 5MB)
In this case, the entire file is encrypted by the ransomware:

securityscorecard.com | 12

Figure 43

Case 2 – File size > 5244992 bytes (approximately 5MB)
In this case, only half of the file is alternatively encrypted:

securityscorecard.com | 13

Figure 44

Case 3 – Modify the encryption percentage using the
“-ep” parameter
Royal ransomware can modify the percentage of the file content to be encrypted. For example,
we’ve set the “-ep” parameter to 10, and the malware only encrypts 10% of the file, as
highlighted below.

securityscorecard.com | 14

Figure 45

Figure 46

securityscorecard.com | 15

Indicators of Compromise

SHA256

f484f919ba6e36ff33e4fb391b8859a94d89c172a465964f99d6113b55ced429

Royal Ransom Note

README.txt

Process spawned

C:\Windows\System32\vssadmin.exe delete shadows /all /quiet

securityscorecard.com | 16

