

SecurityScorecard.com
 info@securityscorecard.com

Tower 49

12 E 49th Street
Suite 15-001

New York, NY 10017
1.800.682.1707

A detailed analysis of the
Money Message Ransomware

Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

securityscorecard.com | 1

Table of contents

Executive summary 2

Analysis and findings 2

Thread activity – sub_ED2770 function 9

Thread activity – sub_F179D0 function 10

Thread activity – sub_F1D1C0 function 12

Running with the --crypt parameter 17

Running with the -d parameter 17

Running with the -l parameter 18

Running with the -v parameter 18

Indicators of Compromise 19

securityscorecard.com | 2

Executive summary
The threat actor group, Money Message ransomware, first appeared in March 2023, demanding
million-dollar ransoms from its targets. Its configuration, which contains the services and
processes to stop a ransomware attack, can be found at the end of the executable. The
ransomware creates a mutex and deletes the Volume Shadow Copies using vssadmin.exe.

The files are encrypted using the ChaCha20 algorithm, with the key being encrypted using ECDH
(Elliptic-curve Diffie-Hellman). The extension of the encrypted files isn’t changed, however the
structure of the files indicates they were encrypted.

Analysis and findings
SHA256: 8be41efd6e6ace53b8c59344be2ba91fe41003987a8e38484b20760d7c400a42

The malware decrypts a list of arguments that it can run with: “--crypt”, “-d”, “-l”, and “-v”. We’ll
explain the purpose of each argument in our analysis.

Figure 1

The messages that would be displayed in the console are decrypted using the same SUB
instruction (see Figure 2).

https://www.bleepingcomputer.com/news/security/new-money-message-ransomware-demands-million-dollar-ransoms/

securityscorecard.com | 3

Figure 2

The ransomware retrieves the current system date and time via a function call to
GetSystemTimePreciseAsFileTime:

Figure 3

The GetCurrentThreadId API is utilized to obtain the ID of the calling thread:

Figure 4

The process writes relevant strings in the console by calling the WriteConsoleA method:

securityscorecard.com | 4

Figure 5

It extracts information about the console screen buffer using GetConsoleScreenBufferInfo:

Figure 6

The malware changes the text color for output using the SetConsoleTextAttribute function (0x2
= FOREGROUND_GREEN):

Figure 7

The executable file is opened by calling the wfsopen method (0x40 = _SH_DENYNO):

Figure 8

The binary is looking for its configuration by reading 4096 bytes at a time:

Figure 9

The configuration contains the ransom note content, the mutex name, a list of directories that
will be skipped, the public key, a list of processes and services to stop, a list of corporate
credentials previously extracted from the victim, and the temporary extension:

securityscorecard.com | 5

Figure 10

Figure 11

The directories extracted from the “skip_directories” field are Base64-decoded (Figure 12).

Figure 12

securityscorecard.com | 6

The ransomware creates a mutex called “12345-12345-12235-12354”, which ensures that only one
copy is running at a single time:

Figure 13

It opens the “ServicesActive” database using the OpenSCManagerW API (0x80000000 =
GENERIC_READ):

Figure 14

The malicious binary obtains a list of all services that run in their own processes using
EnumServicesStatusExW (0x10 = SERVICE_WIN32_OWN_PROCESS, 0x3 =
SERVICE_STATE_ALL):

Figure 15

The following services will be stopped:

• "vss" "sql" "svc$" "memtas" "mepocs" "sophos" "veeam" "backup" "vmms"

Figure 16

securityscorecard.com | 7

The malware takes a snapshot of all processes via a call to CreateToolhelp32Snapshot (0x2 =
TH32CS_SNAPPROCESS):

Figure 17

The processes are enumerated using the Process32FirstW and Process32NextW APIs, as shown
below:

Figure 18

Figure 19

The ransomware opens the target processes using the OpenProcess method (0x1 =
PROCESS_TERMINATE):

Figure 20

The following processes will be killed:

• "sql.exe" "oracle.exe" "ocssd.exe" "dbsnmp.exe" "synctime.exe" "agntsvc.exe"
"isqlplussvc.exe" "xfssvccon.exe" "mydesktopservice.exe" "ocautoupds.exe" "encsvc.exe"
"firefox.exe" "tbirdconfig.exe" "mdesktopqos.exe" "ocomm.exe" "dbeng50.exe"
"sqbcoreservice.exe" "excel.exe" "infopath.exe" "msaccess.exe" "mspub.exe" "onenote.exe"
"outlook.exe" "powerpnt.exe" "steam.exe" "thebat.exe" "thunderbird.exe" "visio.exe"
"winword.exe" "wordpad.exe" "vmms.exe" "vmwp.exe"

Figure 21

securityscorecard.com | 8

The following directories will not be encrypted:

• "C:\msocache" "C:\$windows.~ws" "C:\system volume information" "C:\perflogs"
"C:\programdata" "C:\program files (x86)" "C:\program files" "C:\$windows.~bt"
"C:\windows" "C:\windows.old" "C:\boot"

The executable retrieves a pseudo handle for the process, as highlighted in Figure 22.

Figure 22

IsWow64Process is used to determine if the process is running on a 64-bit architecture:

Figure 23

The ransomware disables file system redirection for the current thread (see Figure 24).

Figure 24

It deletes all Volume Shadow Copies using the vssadmin.exe tool:

Figure 25

A new thread is created, which runs the sub_ED2770 function even if the argument passed to
CreateThread is the StartAddress function:

Figure 26

Figure 27

securityscorecard.com | 9

Thread activity – sub_ED2770 function
The LookupPrivilegeValueA API is utilized to obtain the LUID for the following privileges:
"SeAssignPrimaryTokenPrivilege", "SeRestorePrivilege", and "SeTakeOwnershipPrivilege":

Figure 28

The executable opens the access token associated with the current process (0xF01FF =
TOKEN_ALL_ACCESS):

Figure 29

The process enables all the privileges mentioned above by calling the AdjustTokenPrivileges
method, as highlighted below:

Figure 30

The ransomware retrieves a list of sessions on the machine using WTSEnumerateSessionsW
(Figure 31).

Figure 31

For each of the identified sessions, the malware obtains the access token of the logged-on user:

Figure 32

securityscorecard.com | 10

The DuplicateTokenEx method is used to create an impersonation token that duplicates the
above token (0x2 = SecurityImpersonation, 0x2 = TokenImpersonation):

Figure 33

The malicious binary creates a new thread that will identify the shared resources. The credentials
extracted from the configuration will be used to access those shares.

Figure 34

Thread activity – sub_F179D0 function
The executable extracts a pseudo handle for the current thread:

Figure 35

SetThreadToken is utilized to assign the impersonation token to the current thread, as displayed
in Figure 36.

Figure 36

The ransomware starts enumerating all currently connected resources via a function call to
WNetOpenEnumW (0x1 = RESOURCE_CONNECTED):

Figure 37

The enumeration continues using the WNetEnumResourceW API (see Figure 38). The malware
is looking for files to encrypt in these network resources.

securityscorecard.com | 11

Figure 38

We continue to analyze the main thread.

The process iterates over drives in the range “Z:” to “A:” and calls the GetDriveTypeW method:

Figure 39

For each of the identified drives, the ransomware calls the CreateFileW function (0x80 =
FILE_READ_ATTRIBUTES, 0x7 = FILE_SHARE_DELETE | FILE_SHARE_WRITE |
FILE_SHARE_READ, 0x3 = OPEN_EXISTING, 0x02000000 = FILE_FLAG_BACKUP_SEMANTICS):

Figure 40

The binary obtains the final path for the drives by calling the GetFinalPathNameByHandleW API:

Figure 41

It extracts information about the current system using GetNativeSystemInfo (see Figure 42).

Figure 42

The ransomware creates the ransom note called “money_message.log” in every drive. The file
contains the chat ID that is specific to a victim and can be used to contact the threat actor:

Figure 43

securityscorecard.com | 12

Figure 44

The malware creates a new thread that handles the files encryption:

Figure 45

Thread activity – sub_F1D1C0 function
The ransomware opens the directory to encrypt using CreateFileW, as shown in the figure below.

Figure 46

The files are enumerated using the FindFirstFileExW and FindNextFileW functions:

Figure 47

Figure 48

securityscorecard.com | 13

The following files will not be encrypted:

• "desktop.ini" "ntuser.dat" "thumbs.db" "iconcache.db" "ntuser.ini" "ntldr" "bootfont.bin"
"ntuser.dat.log" "bootsect.bak" "boot.ini" "autorun.inf"

The malware retrieves attributes for a file to be encrypted by calling the GetFileAttributesExW
method:

Figure 49

The ECDH public key used is hard-coded in the executable
“71828bcd92dd7f5950841835ed0fc926a7f6888be7af4fc07ddc06dd8a1e6400bf3ad4cc27083aad
e393c5262570bcbf47aa9855fb9ecc0c82be053c8d95f974a1f2e32d8005e7059461b1e958fecd7dbc
1fa36bf9f9bc8746d431902fe990772d16bab1e779dbe6265444010011708d1091df3838c0a15b0ccf9
9db70e951a74670dd05eb719678d62d150edee22706”.

CryptAcquireContextA is utilized to acquire a handle to a key container within a cryptographic
service provider (0x1 = PROV_RSA_FULL, 0xF0000040 = CRYPT_VERIFYCONTEXT |
CRYPT_SILENT):

Figure 50

CSPRNG is used to generate 0x48 random bytes. These bytes, together with the ECDH public
key, will be used to generate the shared secret.

Figure 51

https://github.com/Duthomhas/CSPRNG

securityscorecard.com | 14

Figure 52

The shared secret generated between the public key and the random bytes is 144 bytes long.
The elliptic curve is P-384 for the ECDH algorithm.

Figure 53

Figure 54

Figure 55

https://en.wikipedia.org/wiki/P-384

securityscorecard.com | 15

The SHA384 algorithm implementation is shown in Figure 56. The process computes the hash
of the shared secret and copies the first 32 resulting bytes to a new buffer. These bytes represent
the ChaCha20 key that will be used to encrypt the file. The nonce (16 bytes) is randomly
generated using the same library.

Figure 56

The binary creates an intermediary file by adding the “cbgnfvn” string at the end of the filename
(0xC0000000 = GENERIC_READ | GENERIC_WRITE, 0x3 = FILE_SHARE_READ |
FILE_SHARE_WRITE, 0x3 = OPEN_EXISTING, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 57

The GetFileType method is utilized to obtain the file type:

Figure 58

securityscorecard.com | 16

The ransomware moves the file pointer to the beginning of the file (0x0 = FILE_BEGIN):

Figure 59

The file content is read via a function call to ReadFile (see Figure 60).

Figure 60

The content is encrypted using the ChaCha20 algorithm:

Figure 61

Figure 62

securityscorecard.com | 17

The encrypted file content is written back to the file using WriteFile (Figure 63).

Figure 63

The encrypted files extension is changed back to the original after the encryption is complete.
The operation is done using MoveFileExW (0x3 = MOVEFILE_COPY_ALLOWED |
MOVEFILE_REPLACE_EXISTING):

Figure 64

The ChaCha20 key is encrypted using ECDH and written to the encrypted file. The ChaCha20
nonce is stored in a non-encrypted form:

Figure 65

Running with the --crypt parameter
The malware only encrypts the directory passed as the argument.

Running with the -d parameter
In this case, the ransomware doesn’t stop the target services and processes and doesn’t delete
the Volume Shadow Copies.

securityscorecard.com | 18

Running with the -l parameter
The process creates a log file called “encrypt_log.txt” that stores the messages written to the
console.

Running with the -v parameter
This is the verbose mode that displays all the intermediary steps during the malware’s execution:

Figure 66

securityscorecard.com | 19

Indicators of Compromise

SHA256

8be41efd6e6ace53b8c59344be2ba91fe41003987a8e38484b20760d7c400a42

Money Message Ransom Note

money_message.log

Mutex

12345-12345-12235-12354

Process spawned

cmd.exe /c vssadmin.exe delete shadows /all /quiet

	Table of contents
	Executive summary
	Analysis and findings
	Thread activity – sub_ED2770 function
	Thread activity – sub_F179D0 function
	Thread activity – sub_F1D1C0 function
	Running with the --crypt parameter
	Running with the -d parameter
	Running with the -l parameter
	Running with the -v parameter
	Indicators of Compromise

