
Revisiting Heaven’s Gate
with Lumma Stealer
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707



Table of contents
Table of contents 1
Executive summary 2
Analysis and findings 2
Indicators of Compromise 26

securityscorecard.com | 1



Executive summary
Lumma is a stealer that has been sold on hacker forums since August 2022. The malware steals
information from web browsers, cryptocurrency wallets, 2FA extensions, and applications such
as AnyDesk, FileZilla, KeePass, Steam, and Telegram. The process also gathers data about the
infected machine, such as the installed applications, the username and computer name, the
current hardware profile, the system default language, the screen resolution, the RAM amount,
and the processor name and type. The malware employs the Heaven’s Gate technique that
enables a 32-bit process to execute 64-bit code by performing a call using segment selector
0x33. The stolen information is exfiltrated to the C2 server using multiple HTTP POST requests.

Analysis and findings
SHA256: 199de8b727ceae96afb7c7560092c1d7a4dbe5a005c07ae20cffd9871da52b82

Using the “Detect It Easy” tool, we determined that the sample is packed with MPRESS:

Figure 1

As we can see in figure 2, the code is decoded at runtime, and we need to find the point where
to dump the unpacked executable:

securityscorecard.com | 2



Figure 2

The malware implements the API hashing technique that resolves the necessary APIs based on
4-byte hashes:

Figure 3

Figure 4

The ExpandEnvironmentStringsW API is utilized to obtain the path of the Google Chrome User
Data directory, as shown in figure 5.

Figure 5

The malicious binary determines if the current process is running under WOW64 via a function
call to IsWow64Process2:

securityscorecard.com | 3



Figure 6

The malicious process opens the NTDLL.dll file in order to extract the syscall numbers that will
be used at runtime (0x80000000 = GENERIC_READ, 0x1 = FILE_SHARE_READ, 0x3 =
OPEN_EXISTING, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 7

It retrieves the size of the specified DLL using GetFileSize:

Figure 8

The ReadFile method is used to read data from the DLL:

Figure 9

The malicious activity is implemented using the Heaven’s Gate technique. The segment
selector 0x33 is utilized to transition to x64 mode and execute 64-bit code. As we can see below,
the syscall 0x55 (NtCreateFile function) is used to open the Local State file:

securityscorecard.com | 4



Figure 10

Figure 11

NtQueryInformationFile is used to obtain the above file size:

securityscorecard.com | 5



Figure 12

The malicious binary reads the file content by calling the NtReadFile method:

Figure 13

Finally, the file is closed via a function call to NtCloseFile:

securityscorecard.com | 6



Figure 14

The “encrypted_key” extracted from the Local State file is Base64-decoded using the
CryptStringToBinaryA API (0x1 = CRYPT_STRING_BASE64):

Figure 15

The binary decrypts the resulting buffer and obtains a 32-byte AES key using
CryptUnprotectData:

Figure 16

Lumma Stealer targets multiple Browser wallets, which are located in the “Google\Chrome\User
Data\Default\Local Extension Settings\” directory. An example is shown in figure 17, which is
looking for MetaMask:

securityscorecard.com | 7



Figure 17

The following Browser wallets and 2FA applications are targeted:

- aeachknmefphepccionboohckonoeemg (Coin98 Wallet)

- afbcbjpbpfadlkmhmclhkeeodmamcflc (Math Wallet)

- aiifbnbfobpmeekipheeijimdpnlpgpp (Station Wallet)

- amkmjjmmflddogmhpjloimipbofnfjih (Wombat)

- bcopgchhojmggmffilplmbdicgaihlkp (Hycon Lite Wallet)

- bhghoamapcdpbohphigoooaddinpkbai (Google Authenticator extension)

- blnieiiffboillknjnepogjhkgnoapac (EQUAL Wallet)

- cihmoadaighcejopammfbmddcmdekcje (Leaf Wallet)

- cjelfplplebdjjenllpjcblmjkfcffne (Jaxx Liberty)

- cnmamaachppnkjgnildpdmkaakejnhae (Auro Wallet)

- cphhlgmgameodnhkjdmkpanlelnlohao (NeoLine Wallet)

- dkdedlpgdmmkkfjabffeganieamfklkm (Cyano Wallet)

- dmkamcknogkgcdfhhbddcghachkejeap (Keplr Wallet)

- ejbalbakoplchlghecdalmeeeajnimhm (MetaMask)

- ffnbelfdoeiohenkjibnmadjiehjhajb (Yoroi Wallet)

- fhbohimaelbohpjbbldcngcnapndodjp (Binance Wallet)

securityscorecard.com | 8



- fhmfendgdocmcbmfikdcogofphimnkno (Sollet)

- fihkakfobkmkjojpchpfgcmhfjnmnfpi (BitApp Wallet)

- flpiciilemghbmfalicajoolhkkenfel (ICONex)

- fnjhmkhhmkbjkkabndcnnogagogbneec (Ronin Wallet)

- gaedmjdfmmahhbjefcbgaolhhanlaolb (Authy 2FA Authentication)

- hcflpincpppdclinealmandijcmnkbgn (KHCWallet)

- hnfanknocfeofbddgcijnmhnfnkdnaad (Coinbase Wallet)

- hpglfhgfnhbgpjdenjgmdgoeiappafln (Guarda)

- ibnejdfjmmkpcnlpebklmnkoeoihofec (TronLink)

- ijmpgkjfkbfhoebgogflfebnmejmfbml (BitClip)

- ilgcnhelpchnceeipipijaljkblbcobl (GAuth Authenticator)

- imloifkgjagghnncjkhggdhalmcnfklk (Trezor Password Manager)

- infeboajgfhgbjpjbeppbkgnabfdkdaf (OneKey Legacy)

- jbdaocneiiinmjbjlgalhcelgbejmnid (Nifty Wallet)

- jojhfeoedkpkglbfimdfabpdfjaoolaf (Polymesh Wallet)

- kkpllkodjeloidieedojogacfhpaihoh (Enkrypt)

- klnaejjgbibmhlephnhpmaofohgkpgkd (ZilPay)

- kncchdigobghenbbaddojjnnaogfppfj (iWallet)

- kpfopkelmapcoipemfendmdcghnegimn (Liquality Wallet)

- lkcjlnjfpbikmcmbachjpdbijejflpcm (Steem Keychain)

- lodccjjbdhfakaekdiahmedfbieldgik (DappPlay)

- mnfifefkajgofkcjkemidiaecocnkjeh (TezBox)

- nanjmdknhkinifnkgdcggcfnhdaammmj (GuildWallet)

- nhnkbkgjikgcigadomkphalanndcapjk (CLV Wallet)

- nkbihfbeogaeaoehlefnkodbefgpgknn (MetaMask)

- nkddgncdjgjfcddamfgcmfnlhccnimig (Saturn Wallet)

- nknhiehlklippafakaeklbeglecifhad (Nabox Wallet)

- nlbmnnijcnlegkjjpcfjclmcfggfefdm (MEW CX)

- nlgbhdfgdhgbiamfdfmbikcdghidoadd (Byone)

- oeljdldpnmdbchonielidgobddffflal (EOS Authenticator)

- onofpnbbkehpmmoabgpcpmigafmmnjhl (Nash Extension)

- ookjlbkiijinhpmnjffcofjonbfbgaoc (Temple)

securityscorecard.com | 9



The malicious process opens and reads the Chrome browser history file:

Figure 18

Figure 19

The “Login Data” database containing login data such as usernames and passwords will also be
exfiltrated by the stealer:

securityscorecard.com | 10



Figure 20

Figure 21

The malware organizes the database based on its name and the SQLite format:

securityscorecard.com | 11



Figure 22

Multiple relevant strings are obfuscated by inserting the “edx765” string. An example of the
decoding operation is displayed in figure 23.

Figure 23

Another database called “Login Data For Account” is also targeted by the malware (see figure
24).

Figure 24

A Google Chrome database called “Web Data” will be exfiltrated as well:

securityscorecard.com | 12



Figure 25

Figure 26

The process opens and reads the Google Chrome cookies database, as highlighted below:

securityscorecard.com | 13



Figure 27

The local storage data can be found in the “Google\Chrome\User Data\Default\Local
Storage\leveldb\” directory:

Figure 28

securityscorecard.com | 14



Figure 29

GetCurrentHwProfileA is utilized to obtain information about the current hardware profile
(figure 30).

Figure 30

The data that will be exfiltrated contains the GUID string corresponding to the hardware profile,
the “TRNGVa—stream” Lumma ID, and the targeted databases that were compressed:

Figure 31

securityscorecard.com | 15



WinHttpOpen is used to initialize the use of WinHTTP functions with the “TeslaBrowser/5.5” user
agent (see figure 32).

Figure 32

The malicious binary performs a network connection to the “45.9.74.78” C2 server on port 80:

Figure 33

The WinHttpOpenRequest API is utilized to create an HTTP POST request to the “/c2sock” URI:

Figure 34

The stealer sets the time outs involved in the HTTP connections using WinHttpSetTimeouts
(figure 35).

Figure 35

The malware adds an HTTP request header via a function call to WinHttpAddRequestHeaders
(0x20000000 =WINHTTP_ADDREQ_FLAG_ADD):

securityscorecard.com | 16



Figure 36

WinHttpSendRequest is used to send the HTTP request to the C2 server, as highlighted in
figure 37.

Figure 37

The stolen information is exfiltrated by calling the WinHttpWriteData method:

Figure 38

The process waits to receive the response from the C2 server using the
WinHttpReceiveResponse function:

Figure 39

Finally, the binary closes the HINTERNET handle using WinHttpCloseHandle:

securityscorecard.com | 17



Figure 40

Other browsers are also targeted (figure 41):

- Chromium

- Microsoft Edge

- Kometa

- Opera Stable

- Opera GX Stable

- Opera Neon

- Brave

- Comodo Dragon

- CocCoc Browser

Figure 41

The stealer is looking for “.txt” files in the “C:\Users\<User>\” folder recursively:

securityscorecard.com | 18



Figure 42

Figure 43

The malware steals data from the following crypto wallets (see figure 44):

- Binance

- Electrum

- Ethereum

- Exodus

- Ledger Live

- Atomic

- Coinomi

securityscorecard.com | 19



Figure 44

The text files are compressed and exfiltrated using the same approach as before:

Figure 45

The stealer searches for “.conf” files in the AnyDesk directory:

securityscorecard.com | 20



Figure 46

The “recentservers.xml” and “sitemanager.xml” files found in the FileZilla directory will also be
exfiltrated:

Figure 47

The malicious binary searches for KeePass files (*.kbdx) in the user profile directory. It locates the
Steam folder and detects the “ssfn*” files, as shown in the figure below.

securityscorecard.com | 21



Figure 48

The process steals “*s” files from Telegram Desktop:

Figure 49

The binary steals Mozilla Firefox passwords, and the “key4.db” database found in the Profiles
directory:

securityscorecard.com | 22



Figure 50

The width and height of the screen of the primary display monitor are retrieved using
GetSystemMetrics (0x0 = SM_CXSCREEN, 0x1 = SM_CYSCREEN):

Figure 51

Figure 52

GetComputerNameA is utilized to extract the NetBIOS name of the local machine (see figure
53).

Figure 53

The sample also obtains the username associated with the current thread:

securityscorecard.com | 23



Figure 54

The malware retrieves the system default language by calling the
GetSystemDefaultLocaleName API:

Figure 55

The cpuid instruction is used to extract the processor name and type, as displayed in figure 56.

Figure 56

GetPhysicallyInstalledSystemMemory is utilized to obtain the RAM amount that is installed on
the computer:

Figure 57

Finally, the stealer exfiltrates an archive containing a file called “System.txt” that is shown in
figure 58, and another one called “Software.txt” that contains the installed software.

securityscorecard.com | 24



Figure 58

The process takes a screenshot and exfiltrates it as “Screen.png”:

Figure 59

securityscorecard.com | 25



Indicators of Compromise

SHA256

199de8b727ceae96afb7c7560092c1d7a4dbe5a005c07ae20cffd9871da52b82

C2 server

45.9.74.78

User agent

TeslaBrowser/5.5

securityscorecard.com | 26


