

SecurityScorecard.com
 info@securityscorecard.com

Tower 49

12 E 49th Street
Suite 15-001

New York, NY 10017
1.800.682.1707

A Detailed Analysis of the
Quantum Ransomware
Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

securityscorecard.com | 1

Table of contents

Executive summary 2

Analysis and findings 2

Stopping targeted services 13

Killing targeted processes 14

Thread activity – sub_10180008CA0 function 16

Thread activity – sub_10180005014 function 19

Running with the /LOGIN= /PASSWORD= /NETWORK-w (-s) /PARAMS= /CONSOLE parameters 22

Running with the /NODEL parameter 24

Running with the /NOKILL parameter 24

Running with the /NOLOG parameter 24

Running with the /SHAREALL parameter 25

Running with the /TARGET= parameter 25

Running with the /FAST= parameter 25

Running with the /MIN= or /MAX= parameter 25

Running with the /FULLPD parameter 25

Running with the /MARKER= parameter 26

Running with the /NOLOCK=-L, -N, -S parameter 26

Indicators of Compromise 27

securityscorecard.com | 2

Executive summary
Quantum ransomware, a rebrand of the MountLocker ransomware, was discovered in August
2021. The malware stops a list of processes and services, and can encrypt the machines found in
the Windows domain or the local network, as well as the network shared resources. It logs all of
its activities in a file called “.log” and computes a Client Id that is the XOR-encryption of the
computer name.

The files are encrypted using the ChaCha20 algorithm, with the key being encrypted using a
global ChaCha20 key, which is eventually encrypted with a public RSA-2048 key. The extension
of the encrypted files is changed to .quantum by the ransomware.

Analysis and findings
SHA256: 91E66F0EDFA5F0277E127B599517B497CF0204B181F32CE1AAB8F9FAA749EC40

The malware is a 64-bit executable that uses the XOR algorithm to decrypt a DLL file, as
highlighted below:

Figure 1

Figure 2

securityscorecard.com | 3

The GetNativeSystemInfo API is utilized to retrieve information about the current system:

Figure 3

The binary allocates new memory areas by calling the VirtualAlloc function (0x3000 =
MEM_COMMIT | MEM_RESERVE, 0x4 = PAGE_READWRITE):

Figure 4

The executable loads the following DLLs into the address space of the process:

● ntdll.dll OLEAUT32.dll ole32.dll SHLWAPI.dll MPR.dll SHELL32.dll msvcrt.dll
● KERNEL32.dll USER32.dll ADVAPI32.dll NETAPI32.dll ACTIVEDS.dll

Figure 5

GetProcAddress is used to obtain the address of multiple export functions such as
“RtlGetNativeSystemInformation”:

Figure 6

The malicious binary changes the protection of a memory area via a function call to
VirtualProtect (0x20 = PAGE_EXECUTE_READ):

Figure 7

The execution flow is transferred to the DLL file decrypted above:

securityscorecard.com | 4

Figure 8

PE-sieve is utilized to dump the DLL file from the current process, as shown in the figure below:

Figure 9

The DLL file has two export functions called “RunW” and “runW,” which execute the same code.

The ransomware extracts the command-line string for the process using GetCommandLineW:

https://github.com/hasherezade/pe-sieve

securityscorecard.com | 5

Figure 10

The CommandLineToArgvW routine is used to parse the command line string and to return
pointers to the command line arguments, as displayed in figure 11.

Figure 11

The malware retrieves the path of the current executable via a function call to
GetModuleFileNameW:

Figure 12

The binary decrypts a list of arguments and compares them with the values extracted above:

Figure 13

Figure 14

securityscorecard.com | 6

We explain each command-line parameter in the table below.

Parameter Explanation
/LOGIN= Username used to propagate to other machines

/PASSWORD= Password used to propagate to other machines
/CONSOLE Logging using the Windows console

/NODEL Do not delete itself
/NOKILL Do not stop the targeted processes and services
/NOLOG No difference in execution

/SHAREALL Encrypt all shared resources excepting “\ADMIN$”
/NETWORK -w Use WMI to move laterally

-s Create a remote service to run the ransomware
/PARAMS= Parameters that the malware run with when performing lateral

movement
/TARGET= Encrypt a specific file/directory

/FAST= Size for fast encryption (default value = 0x10000000 bytes)
/MIN= Minimum size of a file to be encrypted
/MAX= Maximum size of a file to be encrypted

/FULLPD Do not avoid to encrypt the “Program Files”, “Program Files (x86)”,
and “ProgramData” folders

/MARKER= Create a marker file in a drive to be encrypted
/NOLOCK= -L Do not encrypt local drives

-N Do not target other computers in the network
-S Do not encrypt network shared resources

The ransomware initializes the COM library for use by the current thread (0x0 =
COINIT_MULTITHREADED):

Figure 15

The process registers security and sets default security values using the CoInitializeSecurity API
(0x3 = RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 16

IsUserAnAdmin is utilized to verify whether the current user is a member of the local
Administrators group:

Figure 17

The malware creates a logging file called “.log” in the current directory, which will be populated
with different information about the local machine and its actions (0xC0000000 =

securityscorecard.com | 7

GENERIC_READ | GENERIC_WRITE, 0x3 = FILE_SHARE_READ | FILE_SHARE_WRITE):

Figure 18

The Quantum ransomware’s version 5.1 and a custom “system information header” are written
to the logging file using the WriteFile function:

Figure 19

Figure 20

The malicious executable obtains information about the current system by calling the
GetSystemInfo routine:

Figure 21

GlobalMemoryStatus is used to retrieve information about the system’s usage of physical and
virtual memory (see figure 22).

Figure 22

Quantum ransomware extracts the operating system version via a call to RtlGetVersion:

Figure 23

The system processor’s architecture is extracted by calling the RtlGetNativeSystemInformation
function (0x1 = SystemProcessorInformation):

securityscorecard.com | 8

Figure 24

The process retrieves the username associated with the current thread and the NetBIOS name
of the local computer:

Figure 25

Figure 26

The executable obtains join status information for the local computer using the
NetGetJoinInformation API:

Figure 27

The OpenProcessToken routine is used to open the access token associated with the current
process (0x8 = TOKEN_QUERY):

Figure 28

The ransomware extracts a TOKEN_GROUPS structure containing the group accounts
associated with the above token (0x2 = TokenGroups):

Figure 29

The LookupAccountSidW API is utilized to obtain the name of the group corresponding to a
security identifier (SID) passed as a parameter:

securityscorecard.com | 9

Figure 30

The malware instructs the system not to display the critical-error-handler messages using
SetErrorMode (0x1 = SEM_FAILCRITICALERRORS):

Figure 31

LookupPrivilegeValueA is used to extract the locally unique identifier (LUID) corresponding to
the “SeRestorePrivilege” and “SeDebugPrivilege” privileges:

Figure 32

The binary enables the above privileges in the access token via a function call to
AdjustTokenPrivileges:

Figure 33

The cpuid instruction returns processor information that is stored in the EAX, EBX, ECX, and EDX
registers:

Figure 34

Quantum ransomware generates 32 random bytes using the rdtsc instruction, which reads the
current value of the processor’s time stamp. This operation is performed ten times, and the
resulting buffer represents the global ChaCha20 key that will be used later on:

securityscorecard.com | 10

Figure 35

Figure 36

CryptAcquireContextW is utilized to acquire a handle to a key container within a cryptographic
service provider (0x1 = PROV_RSA_FULL):

Figure 37

The ransomware imports a public RSA key via a call to CryptImportKey:

Figure 38

The public RSA key is used to encrypt the global ChaCha20 key generated before:

securityscorecard.com | 11

Figure 39

Figure 40

The process obtains the computer name and then encrypts it using the XOR operator, as
highlighted in the figure below:

Figure 41

A hard-coded 16-byte buffer used to encrypt the computer name together with the encrypted
result represent the client ID that is written to the ransom note:

Figure 42

securityscorecard.com | 12

Figure 43

The binary creates a registry key called “Software\Classes\.quantum\shell\Open\command” and
its default value is set to a process that displays the ransom note:

Figure 44

Figure 45

Quantum ransomware decrypts a list of files/folders that will not be encrypted:

● ":\Windows\" ":\System Volume Information\" ":\$RECYCLE.BIN\"
":\SYSTEM.SAV" ":\WINNT" ":\$WINDOWS.~BT\"

● ":\Windows.old\" ":\PerfLog\" ":\PerfLogs\" ":\Program Files\" ":\Program Files (x86)\"
":\Boot"

● ":\ProgramData\Microsoft\" ":\ProgramData\Packages\" ":\EFI"
":\ProgramData" "$\Windows\" "$\System Volume Information\"

● "$\$RECYCLE.BIN\" "$\SYSTEM.SAV" "$\WINNT" "$\$WINDOWS.~BT\"
"$\Windows.old\" "$\PerfLog\" "$\PerfLogs\" "$\Program Files\"

● "$\Program Files (x86)\" "$\Boot" "$\ProgramData\Microsoft\"
"$\ProgramData\Packages\" "$\EFI" "$\ProgramData" "\WindowsApps\"

● "\Microsoft\Windows\" "\Local\Packages\" "\Windows Defender"
"\microsoft shared\" "\Google\Chrome\" "\Mozilla Firefox\"

● "\Mozilla\Firefox\" "\Internet Explorer\" "\MicrosoftEdge\" "\Tor Browser\"
"\AppData\Local\Temp\" "\AppData" "\All Users"

securityscorecard.com | 13

● "\Boot" "\Google" "\Mozilla" "\autorun.inf" "\boot.ini" "\bootfont.bin"
"\bootsect.bak" "\bootmgr" "\bootmgr.efi" "\bootmgfw.efi"

● "\iconcache.db" "\desktop.ini" "\ntldr" "\ntuser.dat" "\ntuser.dat.log"
"\ntuser.ini" "\thumbs.db"

It also decrypts a list of extensions that will be avoided:

● "exe" "dll" "sys" "msi" "mui" "inf" "cat" "bat" "cmd" "ps1" "vbs" "ttf" "fon" "lnk"
● ".386" ".adv" ".ani" ".bin" ".cab" ".com" ".cpl" ".cur" ".deskthemepack" ".diagcab"
● ".diagcfg" ".diagpkg" ".drv" ".hlp" ".icl" ".icns" ".ico" ".ics" ".idx" ".ldf" ".mod"
● ".mpa" ".mp4" ".mp3" ".msc" ".msp" ".msstyles" ".msu" ".nls" ".nomedia" ".ocx" ".prf"
● ".rom" ".rtp" ".scr" ".shs" ".spl" ".theme" ".themepack" ".wpx" ".lock" ".key" ".hta"

Stopping targeted services
The OpenSCManagerA API is utilized to open the service control manager database (0xF003F =
SC_MANAGER_ALL_ACCESS):

Figure 46

The malware extracts a list of active services using EnumServicesStatusA (0x30 =
SERVICE_WIN32, 0x1 = SERVICE_ACTIVE):

Figure 47

The services whose name contains "SQL", "database", and "msexchange" are targeted by the
ransomware:

Figure 48

The executable opens a targeted service by calling the OpenServiceA routine (0x20 =
SERVICE_STOP):

Figure 49

securityscorecard.com | 14

The service is stopped using ControlService (0x1 = SERVICE_CONTROL_STOP):

Figure 50

The QueryServiceStatusEx function is used to verify whether the service was successfully
stopped:

Figure 51

Killing targeted processes
The binary retrieves a list of processes by calling the RtlGetNativeSystemInformation native API
(0x5 = SystemProcessInformation):

Figure 52

The ransomware constructs a list of processes to terminate:

● "msftesql.exe" "sqlagent.exe" "sqlbrowser.exe" "sqlwriter.exe" "oracle.exe" "ocssd.exe"
"dbsnmp.exe"

● "synctime.exe" "agntsvc.exe" "isqlplussvc.exe" "xfssvccon.exe" "sqlservr.exe" "encsvc.exe"
"ocautoupds.exe"

● "mydesktopservice.exe" "firefoxconfig.exe" "tbirdconfig.exe" "mydesktopqos.exe"
"ocomm.exe" "mysqld.exe"

● "mysqld-nt.exe" "mysqld-opt.exe" "dbeng50.exe" "sqbcoreservice.exe" "excel.exe"
"infopath.exe" "msaccess.exe"

● "mspub.exe" "onenote.exe" "outlook.exe" "powerpnt.exe" "sqlservr.exe" "thebat.exe"
"steam.exe" "thebat64.exe"

● "thunderbird.exe" "visio.exe" "winword.exe" "wordpad.exe" "QBW32.exe" "QBW64.exe"
"ipython.exe" "wpython.exe"

● "python.exe" "dumpcap.exe" "procmon.exe" "procmon64.exe" "procexp.exe"
"procexp64.exe"

Figure 53

securityscorecard.com | 15

The malware opens a targeted process using the OpenProcess routine (0x1 =
PROCESS_TERMINATE):

Figure 54

The process is killed by calling the TerminateProcess API:

Figure 55

An example of a log file is displayed in the figure below:

Figure 56

The process calls the GetVolumeInformationW API with the drives ranging from A: to Z: (see
figure 57).

Figure 57

The drive type is retrieved using the GetDriveTypeW function, and the malware expects a value
different than 0x4 (DRIVE_REMOTE):

securityscorecard.com | 16

Figure 58

The ransomware creates a thread that handles the local drives encryption and another one that
handles the network shares encryption. The responsible function is the same, sub_10180008CA0:

Figure 59

Thread activity – sub_10180008CA0 function
The process creates two unnamed event objects via a function call to CreateEventA:

Figure 60

An unnamed semaphore object is also created by the malware:

Figure 61

The binary creates two threads that will perform the files’ encryption. The responsible function is
sub_10180005014, and the current thread gives a filename to encrypt to the encryption threads:

Figure 62

Quantum ransomware starts enumerating the network resources by calling the
WNetOpenEnumW API (0x2 = RESOURCE_GLOBALNET):

securityscorecard.com | 17

Figure 63

WNetEnumResourceW is utilized to continue the enumeration of network resources:

Figure 64

The malicious process retrieves information about the shared resources on the local machine:

Figure 65

The ransomware doesn’t target the ADMIN$ share, as highlighted in figure 66.

Figure 66

The files are enumerated using the FindFirstFileW and FindNextFileW functions:

Figure 67

Figure 68

The ransomware doesn’t encrypt the ransom note, if present:

securityscorecard.com | 18

Figure 69

The file’s extension is compared with the list that will be avoided, as shown below:

Figure 70

One of the events created earlier is signaled by calling the SetEvent API, which means that a file
is ready to be encrypted.

Figure 71

The malware creates a ransom note called “README_TO_DECRYPT.html” in every directory that
is encrypted (0x40000000 = GENERIC_WRITE):

Figure 72

The ransom note is populated using the WriteFile routine:

Figure 73

Thread activity – sub_10180005014 function
ReleaseSemaphore is utilized to release the semaphore created earlier:

Figure 74

The process opens a targeted file by calling the CreateFileW routine (0xC0010000 =
GENERIC_READ | GENERIC_WRITE | DELETE):

securityscorecard.com | 19

Figure 75

The size of the file is obtained using GetFileSizeEx:

Figure 76

The SetFileInformationByHandle API is used to append the “.quantum” extension to an
encrypted file name (0x3 = FileRenameInfo):

Figure 77

The process generates another ChaCha20 key with the same rdtsc instruction. This key will be
used to encrypt the file’s content, as we’ll see later on:

Figure 78

The ransomware constructs the initial ChaCha20 state using the global ChaCha20 key presented
in figure 36:

Figure 79

Finally, the ChaCha20 key generated above is encrypted with the global ChaCha20 key and will
be stored in the encrypted file:

securityscorecard.com | 20

Figure 80

Figure 81

The binary moves the file pointer to the end of the file using SetFilePointerEx (0x2 = FILE_END):

Figure 82

The ransomware writes the fast encryption size (0x10000000 bytes), the encrypted ChaCha20
key, and the RSA-encrypted global ChaCha20 key to the encrypted file:

securityscorecard.com | 21

Figure 83

The file content is read by calling the ReadFile API (see figure 84).

Figure 84

The content is encrypted using the ChaCha20 algorithm, and the encrypted data is written back
to the file:

Figure 85

Figure 86

We continue with the analysis of the main thread.

The malware obtains the path of the %TEMP% folder using GetTempPathW:

Figure 87

A batch file is created in the %TEMP% directory. The file name is based on a GetTickCount
function return value:

securityscorecard.com | 22

Figure 88

The script’s purpose is to delete itself and the initial executable, as highlighted below:

Figure 89

Finally, the batch file is executed by calling the CreateProcessW function (0x08000000 =
CREATE_NO_WINDOW):

Figure 90

Running with the /LOGIN= /PASSWORD= /NETWORK-w (-
s) /PARAMS= /CONSOLE parameters
Quantum ransomware creates a new console using the AllocConsole routine:

Figure 91

The executable retrieves a handle to the standard output device using GetStdHandle
(0xFFFFFFF5 = STD_OUTPUT_HANDLE):

securityscorecard.com | 23

Figure 92

The process creates 8 threads that will enumerate the computers in the Windows domain as
well as the local network:

Figure 93

NetGetDCName is utilized to retrieve the name of the domain controller for the primary domain:

Figure 94

The WNetOpenEnumW function is used to start enumerating the resources on the local network
(0x2 = RESOURCE_GLOBALNET):

Figure 95

The malicious binary continues the enumeration of the network resources using
WNetEnumResourceW:

Figure 96

The malware makes a connection to the identified network resources using the username and
password passed as parameters:

Figure 97

securityscorecard.com | 24

The malware doesn’t target the ADMIN$ and IPC$ shares, however; the ransomware executable
will be copied in the ProgramData directory found on the remote machine identified above:

Figure 98

CopyFileW is utilized to copy the binary on the remote host. It will be executed via WMI (if the “-
w” parameter is specified) or by creating a remote Windows service (if the “-s” parameter is
specified):

Figure 99

Quantum ransomware obtains information about the shared resources on the remote computer
by calling the NetShareEnum API:

Figure 100

Running with the /NODEL parameter
In this case, the ransomware doesn’t perform the self-deletion operation.

Running with the /NOKILL parameter
The malware doesn’t stop the targeted processes and services.

Running with the /NOLOG parameter
Interestingly, the ransomware still creates the log file even if it’s running with this parameter.

securityscorecard.com | 25

Running with the /SHAREALL parameter
In this case, the malware encrypts all shared resources except for “$ADMIN”.

Running with the /TARGET= parameter
Quantum ransomware only encrypts the file/directory passed as a parameter.

Running with the /FAST= parameter
The size for fast encryption is set to the value passed as the parameter. The last 5 bytes represent
a marker that appears in every encrypted file:

Figure 101

Running with the /MIN= or /MAX= parameter
If the file size is greater than MAX or lower than MIN, the file is not encrypted by Quantum
ransomware.

Running with the /FULLPD parameter
The following directories will also be encrypted by the ransomware: “Program Files”, “Program
Files (x86)”, and “ProgramData”.

Running with the /MARKER= parameter
The process creates an empty file on each drive that will be encrypted. The file name is passed

securityscorecard.com | 26

as a parameter (0xC0000000 = GENERIC_READ | GENERIC_WRITE):

Figure 102

Running with the /NOLOCK=-L, -N, -S parameter
In this case, the malware splits its execution flow according to the parameter:

● do not encrypt local disks (“-L”)
● do not encrypt other machines in the network (“-N”)
● do not encrypt network shared resources (“-S”)

Indicators of Compromise

Quantum Ransom Note

README_TO_DECRYPT.html

Files created

%Temp%\<GetTickCount result>.bat

.log

Registry key created

Software\Classes\.quantum\shell\Open\command

