
A Detailed Analysis of The
Last Version of REvil
Ransomware
Prepared by: Vlad Pasca, Senior Malware and
Threat Analyst

SecurityScorecard.com
info@securityscorecard.com

Tower 49
12 E 49th Street

Suite 15-001
New York, NY 10017

1.800.682.1707

Table of contents
Executive summary 2

Analysis and findings 2

Thread activity – sub_1282EA7 function 37

Thread activity – sub_1287677 function 37

Thread activity – sub_1284468 function 41

Thread activity – sub_12841D3 function 44

Running with the -smode parameter 48

Running with the -silent parameter 51

Running with the -path parameter 51

Running with the -nolan parameter 51

Running with the -nolocal parameter 51

Running with the -fast parameter 51

Running with the -full parameter 51

Indicators of Compromise 51

Appendix 52

securityscorecard.com | 1

Executive summary

REvil/Sodinokibi ransomware has been active since 2019, with breaks due to law enforcement.
The ransomware can run with one of the following parameters: "-nolan", "-nolocal", "-path",
"-silent", "-smode", “-fast”, and “-full”. The malware comes with an RC4 encrypted configuration,
kills a list of targeted processes, and stops some specified services. It also deletes all Volume
Shadow Copies using WMI and targets logical drives and network shares.

The sample only renames the files that are supposed to be encrypted due to a bug
implemented by the developers. REvil implements a combination of ECC (Curve25519) and
Salsa20 algorithms during the encryption process. The ransomware can operate in Safe Mode by
specifying a parameter, and it establishes persistence in this case by creating an entry under the
RunOnce key.

Analysis and findings

SHA256: 0c10cf1b1640c9c845080f460ee69392bfaac981a4407b607e8e30d2ddf903e8

The ransomware resolves the relevant APIs at runtime by implementing an API hashing
function:

Figure 1

securityscorecard.com | 2

REvil decrypts relevant strings at runtime using the RC4 algorithm. The call shown in figure 2
contains a pointer to a buffer that contains the RC4 keys, the encrypted strings, and the offset to
the RC4 key:

Figure 2

The implementation of the RC4 algorithm and a decrypted string are shown below:

Figure 3

Figure 4

securityscorecard.com | 3

LoadLibraryA is used to load multiple DLLs into the address space of the process:

Figure 5

GetProcAddress is utilized to obtain the address of multiple exported functions:

Figure 6

The malware forces the system not to display the critical-error-handler message box via a
function call to SetErrorMode (0x1 = SEM_FAILCRITICALERRORS):

Figure 7

The REvil configuration is decrypted using the RC4 algorithm:

Figure 8

securityscorecard.com | 4

The table below describes the meaning of each parameter:

Argument Description

pk The ECC public key encoded using Base64

pid Bcrypt hash representing the affiliate ID

sub Bcrypt hash representing the campaign
identifier

dbg Boolean value that indicates whether REvil
runs in debug mode

wht Three lists of elements that will be skipped:

● fld – whitelisted directories

● fls – whitelisted files

● ext – whitelisted extensions

prc A list of processes that will be stopped

accs A list of credentials that will be used to
connect to network shares

svc A list of services that will be stopped and
deleted

net Boolean value that indicates whether REvil
communicates with the C2 servers

nbody The ransom note encoded using Base64

nname The ransom note name

exp Boolean value that indicates whether REvil
should perform privilege escalation

img The text that will be written in the
background image, which is encoded using
Base64

et A value that specified the encryption type:

● 0 – fast encryption

● 1 – full encryption

● 2 – encrypt 1MB of a file and then skip
several MBs mentioned in the spsize

securityscorecard.com | 5

Argument Description

parameter

spsize A value that specifies the number of MBs that
will be skipped when the encryption type is 2

arn Boolean value that indicates whether REvil
establishes persistence on the system

rdmcnt Readme count (set to 0)

The binary implements a JSON parser that will parse the configuration:

Figure 9

The MultiByteToWideChar API is used to convert the encoded ECC public key to a UTF-16 string:

Figure 10

securityscorecard.com | 6

CryptStringToBinaryW is utilized to decode the public key (0x1 = CRYPT_STRING_BASE64):

Figure 11

Figure 12

The nbody parameter that contains the ransom note content is also decoded using the same
approach (0x1 = CRYPT_STRING_BASE64):

Figure 13

Figure 14

securityscorecard.com | 7

Lastly, the ransomware decrypts the img field (0x1 = CRYPT_STRING_BASE64):

Figure 15

Figure 16

The malicious executable opens the "SOFTWARE\LFF9miD" registry key via a call to
RegOpenKeyExW (0x80000002 = HKEY_LOCAL_MACHINE, 0x1 = KEY_QUERY_VALUE):

Figure 17

REvil decrypts a .onion address and a string using the RC4 algorithm:

Figure 18

securityscorecard.com | 8

The rdtsc instruction is used multiple times to retrieve the processor time stamp:

Figure 19

The malware uses a custom function to generate 0xC0 bytes:

Figure 20

Figure 21

securityscorecard.com | 9

The resulting buffer of the above operation is highlighted in figure 22:

Figure 22

The above buffer is modified two times, and the binary will use 32 bytes from the result:

Figure 23

securityscorecard.com | 10

Figure 24

The process generates a 32-byte Curve25519 secret key based on the above result. Using the
private key, the binary generates the corresponding 32-byte Curve25519 public key, where the
basepoint is 09 followed by all zeros:

Figure 25

Figure 26

The capa tool confirms that the algorithm used to generate the above key is indeed Curve25519:

securityscorecard.com | 11

Figure 27

Using the same approach, REvil generates a second Curve25519 public key based on a different
Curve25519 private key:

Figure 28

Figure 29

The ransomware computes a shared secret based on the secret key used to generate the above
public key and the attacker’s public key from the configuration:

Figure 30

Figure 31

securityscorecard.com | 12

Using the same method as before, the malicious process generates a buffer and then computes
32 bytes:

Figure 32

The executable creates the "SOFTWARE\LFF9miD" registry key by calling the RegCreateKeyExW
routine (0x80000002 = HKEY_LOCAL_MACHINE, 0x2 = KEY_SET_VALUE):

Figure 33

REvil stores the attacker’s public key that was decoded in a registry value called “miz” (0x3 =
REG_BINARY):

Figure 34

securityscorecard.com | 13

REvil stores the first generated Curve25519 public key in a registry value called "od4U" (0x3 =
REG_BINARY):

Figure 35

The second Curve25519 private key is AES encrypted using the shared key. The IV was randomly
generated, and the ransomware computes the CRC32 of the encrypted buffer. The result is
stored in a registry value called “U7ykk”:

Figure 36

The malicious binary encodes the above buffer using Base64 (0x40000001 =
CRYPT_STRING_NOCRLF | CRYPT_STRING_BASE64):

Figure 37

securityscorecard.com | 14

Figure 38

The CryptBinaryToStringW function is utilized to encode the attacker’s public key back to
Base64 format (0x40000001 = CRYPT_STRING_NOCRLF | CRYPT_STRING_BASE64):

Figure 39

Figure 40

The binary retrieves the processor name using the cpuid instruction:

securityscorecard.com | 15

Figure 41

The GetWindowsDirectoryW routine is used to obtain the path of the Windows directory:

Figure 42

REvil extracts the volume serial number for the C drive by calling the GetVolumeInformationW
API:

Figure 43

The ransomware computes the CRC32 hash of the processor name. The implementation is
displayed below:

securityscorecard.com | 16

Figure 44

The malware constructs a UID by combining the CRC32 hash and the volume serial number:

Figure 45

Figure 46

The executable opens the "SOFTWARE\LFF9miD" registry key via a function call to
RegOpenKeyExW (0x80000002 = HKEY_LOCAL_MACHINE, 0x1 = KEY_QUERY_VALUE):

securityscorecard.com | 17

Figure 47

RegQueryValueExW is utilized to retrieve the type and data for a non-existent registry value
called "IhnG91T":

Figure 48

REvil generates a random extension consisting of 5-10 alphanumeric characters. There is a
comparison between the “decrypt_everything” string and “msu” (one of the whitelisted
extensions):

Figure 49

The binary creates a registry value called "IhnG91T", which contains the generated extension that
will be appended to the encrypted files (0x1 = REG_SZ):

securityscorecard.com | 18

Figure 50

The malicious file retrieves the name of the current user by calling the GetUserNameW routine:

Figure 51

The GetComputerNameW API is used to extract the NetBIOS name of the local computer:

Figure 52

The process opens the "SYSTEM\CurrentControlSet\services\Tcpip\Parameters" registry key via a
call to RegOpenKeyExW (0x80000002 = HKEY_LOCAL_MACHINE, 0x1 = KEY_QUERY_VALUE):

Figure 53

The ransomware verifies whether the computer is part of a Windows domain by checking the
“Domain” registry value. This value is supposed to be the DNS domain name:

securityscorecard.com | 19

Figure 54

RegOpenKeyExW is utilized to open the "Control Panel\International" registry key (0x80000001 =
HKEY_CURRENT_USER, 0x1 = KEY_QUERY_VALUE):

Figure 55

The current user’s language is extracted using the RegQueryValueExW function:

Figure 56

The RegOpenKeyExW routine is used to open the "SOFTWARE\Microsoft\Windows
NT\CurrentVersion" key (0x80000002 = HKEY_LOCAL_MACHINE, 0x1 = KEY_QUERY_VALUE):

securityscorecard.com | 20

Figure 57

The Windows product name is retrieved from the Windows registry:

Figure 58

The malware retrieves a list of sessions on the local computer using the
WTSEnumerateSessionsW API:

Figure 59

The executable obtains the primary access token of the logged-on user specified by a session
extracted above:

Figure 60

securityscorecard.com | 21

REvil scans for available drives and determines the drive type using GetDriveTypeW. It expects
the return value to be 0x2 (DRIVE_REMOVABLE) and 0x3 (DRIVE_FIXED):

Figure 61

The ransomware performs a call to GetDiskFreeSpaceExW in order to retrieve information about
the amount of space/free space on a disk:

Figure 62

The drive name, its type, and the data extracted above are encoded using Base64 (0x40000001 =
CRYPT_STRING_NOCRLF | CRYPT_STRING_BASE64):

Figure 63

The GetNativeSystemInfo API is utilized to obtain information about the current system:

Figure 64

The binary is looking for a registry value called “cN86rtdI” under "SOFTWARE\LFF9miD", which
doesn’t exist at this time:

securityscorecard.com | 22

Figure 65

Revil writes all the information collected so far in a JSON form:

Figure 66

The executable generates a 32-byte Curve25519 private key that is used to compute the
corresponding public key:

Figure 67

The above buffer that contains information about the system is encrypted using the XOR
operator (the key changes regularly):

securityscorecard.com | 23

Figure 68

The ransomware computes the CRC32 hash of the encrypted buffer and appends the value to it.
The encrypted data is written to a registry value called “cN86rtdI” via a function call to
RegSetValueExW (0x3 = REG_BINARY):

Figure 69

All registry values that were created by REvil are shown in figure below:

Figure 70

The encrypted buffer from the “cN86rtdI” registry value is encoded in Base64 format using
CryptBinaryToStringW (0x1 = CRYPT_STRING_BASE64):

securityscorecard.com | 24

Figure 71

The following parameters are decrypted using RC4: "-nolan", "-nolocal", "-path", "-silent",
"-smode", "-fast", and "-full".

The malicious executable extracts the command-line string for the process:

Figure 72

The CommandLineToArgvW routine is used to obtain an array of pointers to the command line
arguments:

Figure 73

The malware verifies whether the current user is SYSTEM by calling the
SHTestTokenMembership function (0x12 = SECURITY_LOCAL_SYSTEM_RID):

Figure 74

The binary creates a mutex called "Global\8D87239A-846D-CD1A-F9C2-8B6763B3B04F" in order
to ensure that only one copy of the ransomware is running at a single time:

securityscorecard.com | 25

Figure 75

The SHEmptyRecycleBinW API is utilized to empty the Recycle Bin on all drives (0x7 =
SHERB_NOCONFIRMATION | SHERB_NOPROGRESSUI | SHERB_NOSOUND):

Figure 76

The file retrieves a pseudo handle for the current process:

Figure 77

The priority class for the process is changed to 0x8000 (ABOVE_NORMAL_PRIORITY_CLASS)
using the SetPriorityClass API:

Figure 78

REvil prevents the system from entering sleep or turning off the display while it’s running
(0x80000001 = ES_CONTINUOUS | ES_SYSTEM_REQUIRED):

Figure 79

securityscorecard.com | 26

The process enables the SeDebugPrivilege privilege in the access token using RtlAdjustPrivilege
(0x14 = SeDebugPrivilege):

Figure 80

A new thread that will execute the sub_12841D3 function is created by the malware:

Figure 81

The OpenSCManagerW routine is used to establish a connection to the service control manager
on the local machine. The database name was previously decrypted using RC4 (0x4 =
SC_MANAGER_ENUMERATE_SERVICE):

Figure 82

The binary extracts all active services via a call to EnumServicesStatusExW (0x30 =
SERVICE_WIN32, 0x1 = SERVICE_ACTIVE):

securityscorecard.com | 27

Figure 83

There is a comparison between a service name and the targeted list of services (“svc” field):

Figure 84

The executable opens a targeted service using OpenServiceW (0x10020 = DELETE |
SERVICE_STOP):

Figure 85

The service is stopped via a function call to ControlService (0x1 = SERVICE_CONTROL_STOP):

Figure 86

Finally, the targeted service is deleted by the ransomware:

securityscorecard.com | 28

Figure 87

The CreateToolhelp32Snapshot function is used to take a snapshot of all processes in the system
(0x2 = TH32CS_SNAPPROCESS):

Figure 88

The malware retrieves information about the first process from the snapshot using the
Process32FirstW routine:

Figure 89

The enumeration continues by calling the Process32NextW API:

Figure 90

A targeted process (“prc” field) is opened using OpenProcess (0x1 = PROCESS_TERMINATE):

Figure 91

REvil kills a targeted process via a function call to TerminateProcess:

securityscorecard.com | 29

Figure 92

A new thread that will execute the sub_1284468 function is created by the ransomware:

Figure 93

The binary enables the SeTakeOwnershipPrivilege privilege in the access token using
RtlAdjustPrivilege (0x9 = SeTakeOwnershipPrivilege):

Figure 94

The executable creates an input/output (I/O) completion port that is not yet associated with a
file handle (0xFFFFFFFF = INVALID_HANDLE_VALUE):

Figure 95

GetSystemInfo is used to retrieve information about the current system:

securityscorecard.com | 30

Figure 96

The CreateThread API is utilized to create 2 (the number of processors) that will handle files
encryption:

Figure 97

The new threads’ priority is set to 0x2 (THREAD_PRIORITY_HIGHEST) using SetThreadPriority:

Figure 98

REvil enumerates all drives and extracts their type using GetDriveTypeW:

Figure 99

The malicious process allocates and initializes a security identifier (SID):

securityscorecard.com | 31

Figure 100

The SetEntriesInAclW API is used to create a new access control list (ACL):

Figure 101

The DACL of a drive is modified using the SetNamedSecurityInfoW API (0x1 = SE_FILE_OBJECT,
0x4 = DACL_SECURITY_INFORMATION):

Figure 102

A ransom note called “<REvil extension>-readme.txt” is created in every targeted directory via a
call to CreateFileW (0x40000000 = GENERIC_WRITE, 0x2 = CREATE_ALWAYS):

securityscorecard.com | 32

Figure 103

The ransom note is populated using WriteFile:

Figure 104

The ransomware enumerates the files using the FindFirstFileW and FindNextFileW APIs:

Figure 105

Figure 106

All directories identified on a drive are compared with the following strings: "program files",
"program files (x86)", and "decrypt_everything".

A file extension is extracted by calling the PathFindExtensionW routine:

securityscorecard.com | 33

Figure 107

The malware opens a file using CreateFileW (0x80000000 = GENERIC_READ, 0x1 =
FILE_SHARE_READ, 0x3 = OPEN_EXISTING):

Figure 108

The malicious binary moves the file pointer to the last 0xE8 bytes in the file (0x0 = FILE_BEGIN):

Figure 109

REvil reads the last 0xE8 bytes from a file, which we believe that are common to all encrypted
files (see figure 110). It computes the CRC32 hash of the extracted buffer and compares it with a
4-byte value.

Figure 110

The process obtains file system attributes for a file or directory by calling the GetFileAttributesW
routine:

securityscorecard.com | 34

Figure 111

New attributes are set for a file using SetFileAttributesW (0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 112

There is a bug implemented by the malware’s author that prevents the files encryption. Firstly,
the ransomware adds the ransomware extension to files using MoveFileW:

Figure 113

Whether the call is successful, the return value is supposed to be nonzero. The bug that was
introduced doesn’t allow the execution to break out of the loop, and there is a second try to
rename a file. However, because the file was successfully renamed, the process raises the
ERROR_FILE_NOT_FOUND error.

The binary posts an empty I/O completion packet to the IOCP created earlier:

Figure 114

It’s interesting that even if the ransomware fails at reading the file content and sending it to the
encryption threads, it creates 2 (which is the number of processors) more such threads
(sub_1282EA7 function).

A new thread that will run a different function is created by the malware:

securityscorecard.com | 35

Figure 115

The process waits until the above thread finishes via a function call to WaitForSingleObject:

Figure 116

Thread activity – sub_1282EA7 function

The GetQueuedCompletionStatus routine is utilized to dequeue an I/O completion packet from
the IOCP:

Figure 117

Thanks to the bug implemented by REvil in this binary, the completion packet is always empty,
and then the encryption couldn’t occur.

Thread activity – sub_1287677 function

The ransomware starts enumerating all currently connected network resources (0x1 =
RESOURCE_CONNECTED):

securityscorecard.com | 36

Figure 118

The enumeration continues by calling the WNetEnumResourceW API:

Figure 119

For every network share that can be accessed, the malware creates a ransom note inside every
folder (0x40000000 = GENERIC_WRITE, 0x2 = CREATE_ALWAYS):

Figure 120

The WriteFile function is utilized to populate the ransom note:

Figure 121

The files are enumerated using the FindFirstFileW and FindNextFileW APIs:

securityscorecard.com | 37

Figure 122

Figure 123

WNetCancelConnection2W is used to cancel the existing network connection to a network
share:

Figure 124

The binary uses the credentials from the “accs” field to connect to a network resource (see figure
125). We believe these credentials were specific to the impacted company.

Figure 125

We continue with the analysis of the main thread.

The process obtains the path of the executable via a function call to GetModuleFileNameW:

Figure 126

securityscorecard.com | 38

REvil deletes itself only after a reboot (0x4 = MOVEFILE_DELAY_UNTIL_REBOOT):

Figure 127

The ransom note is displayed in figure below.

Figure 128

The algorithm that would be used to encrypt files is Salsa20:

securityscorecard.com | 39

Figure 129

Thread activity – sub_1284468 function

The executable initializes the COM library for use by the thread:

Figure 130

The CoCreateInstance API is used to create an IWbemContext Interface with the
{674B6698-EE92-11D0-AD71-00C04FD8FDFF} CLSID:

Figure 131

securityscorecard.com | 40

The ransomware retrieves information about the current system by calling the
GetNativeSystemInfo routine:

Figure 132

The binary uses the IWbemContext::SetValue method in order to create/overwrite a context
value:

Figure 133

The process creates a WbemLocator object with the {4590f811-1d3a-11d0-891f-00aa004b2e24}
CLSID:

Figure 134

The malicious file connects to the local “ROOT\CIMV2” namespace and retrieves a pointer to an
IWbemServices object:

Figure 135

securityscorecard.com | 41

The CoSetProxyBlanket function is utilized to set the authentication information that will be
used to make calls on a proxy (0xA = RPC_C_AUTHN_WINNT, 0x3 =
RPC_C_AUTHN_LEVEL_CALL, 0x3 = RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 136

The malware executes the following query in order to pull a list of shadow copies stored on the
local machine:

Figure 137

The ID of the shadow copy is extracted using the Get method:

Figure 138

Each shadow copy is deleted via a function call to IWbemServices::DeleteInstance:

securityscorecard.com | 42

Figure 139

Thread activity – sub_12841D3 function

CoInitializeSecurity is utilized to set the default security values for the process (0x3 =
RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 140

The binary creates a WbemLocator object with the {4590f811-1d3a-11d0-891f-00aa004b2e24}
CLSID:

Figure 141

The process connects to the local “ROOT\CIMV2” namespace and retrieves a pointer to an
IWbemServices object:

securityscorecard.com | 43

Figure 142

CoSetProxyBlanket is utilized to set the authentication information that will be used to make
calls on a proxy (0xA = RPC_C_AUTHN_WINNT, 0x3 = RPC_C_AUTHN_LEVEL_CALL, 0x3 =
RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 143

REvil creates an IUnsecuredApartment Interface with the
{49bd2028-1523-11d1-ad79-00c04fd8fdff} CLSID:

Figure 144

The executable runs a query to extract the new process events:

securityscorecard.com | 44

Figure 145

Another query is used to retrieve the service modification events:

Figure 146

The ransomware obtains a pseudo handle for the process using GetCurrentProcess:

Figure 147

The current thread waits until the process is in the signaled state:

Figure 148

securityscorecard.com | 45

There is a call to IWbemClassObject::Get that extracts the TargetInstance property:

Figure 149

The ransomware retrieves the user name and domain name under which a process is running
using the GetOwner function:

Figure 150

Using a similar function call as presented in figure 149, the malware extracts the username, the
user domain, and the process name.

REvil kills all running processes specified in the “prc” field from the configuration using the
Terminate function:

Figure 151

securityscorecard.com | 46

The services specified by the “svc” field that can be found on the system are stopped using
StopService:

Figure 152

Running with the -smode parameter

The current user’s password is changed to “k$U0MFKs1V” by the malware:

Figure 153

The ransomware enables the Automatic Log-on by modifying the “AutoAdminLogon”,
“DefaultUserName”, and “DefaultPassword” values under the "SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon" registry key:

Figure 154

securityscorecard.com | 47

Figure 155

Figure 156

The GetModuleFileNameW API is used to obtain a path of the executable file of the process:

Figure 157

The binary opens the RunOnce registry key (0x80000002 = HKEY_LOCAL_MACHINE, 0x2 =
KEY_SET_VALUE):

Figure 158

securityscorecard.com | 48

It establishes persistence by creating a registry value called “*aG951f”:

Figure 159

The malware configures Windows to boot in Safe Mode (0x5 = SW_SHOW):

Figure 160

A new registry value called “*uTHnGD” is created under the RunOnce key. The process purpose is
to disable the boot in Safe Mode:

Figure 161

The process enables the SeShutdownPrivilege privilege in the access token using
RtlAdjustPrivilege (0x13 = SE_SHUTDOWN_PRIVILEGE):

Figure 162

securityscorecard.com | 49

The NtShutdownSystem function is utilized to shut down the system:

Figure 163

Running with the -silent parameter

In this case, the ransomware doesn’t create the threads that run sub_12841D3 (responsible for
stopping the processes/services) and sub_1284468 (Volume Shadow Copies deletion).

Running with the -path parameter

The malware only encrypts the directory passed as a parameter.

Running with the -nolan parameter

The network shares are skipped by the ransomware because the sub_1287677 function is not
executed.

Running with the -nolocal parameter

Whether it’s running with this parameter, the binary doesn’t encrypt the local drives.

Running with the -fast parameter

The process only encrypts the first MB of the file.

Running with the -full parameter

In this case, the whole file is encrypted.

securityscorecard.com | 50

Indicators of Compromise

Mutex

Global\8D87239A-846D-CD1A-F9C2-8B6763B3B04F

REvil Ransom Note

{EXT}-readme.txt

Processes spawned

bcdedit /set {current} safeboot network

Registry Keys

Key: HKLM\SOFTWARE\LFF9miD

Value: miz

Value: od4U

Value: U7ykk

Value: IhnG91T

Value: cN86rtdI

Key: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

Value: AutoAdminLogon

Value: DefaultUserName

Value: DefaultPassword

Key: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

Value: *aG951f

Value: *uTHnGD

securityscorecard.com | 51

Appendix

List of processes to be killed

outlook thebat oracle sqbcoreservice mydesktopservice wordpad encsvc infopath sql visio
powerpnt mspub thunderbird agntsvc xfssvccon synctime winword dbsnmp ocautoupds
onenote msaccess tbirdconfig mydesktopqos ocomm isqlplussvc firefox ocssd steam excel
dbeng50

List of services to be stopped

sophos sql mepocs memtas svc$ backup veeam vss

Whitelisted directories

mozilla perflogs msocache $recycle.bin “system volume information” “tor browser” windows
programdata appdata boot “application data” $windows.~bt “program files” windows.old
“program files (x86)” google intel $windows.~ws

Whitelisted files

autorun.inf ntuser.dat.log ntuser.ini boot.ini iconcache.db bootfont.bin ntuser.dat thumbs.db
bootsect.bak ntldr desktop.ini

Whitelisted extensions

ics cur icl lnk hta idx diagpkg exe sys msi mpa shs nomedia ani diagcab ps1 scr cpl bin msstyles
ocx msu nls themepack 386 wpx icns lock diagcfg cmd mod bat prf msc key cab rtp com hlp ldf
rom spl deskthemepack dll msp drv theme adv ico

securityscorecard.com | 52

